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1. Introduction



Introduction
Back in high school, you may have studied the Snell’s laws of reflection and refraction
for a flat interface.
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θtr

θref
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• Reflexion: θref = θinc .
• Refraction (transmission):

sin(θinc )

c0
=

sin(θtr )

c1
.

Question: For a rough (random) interface, can we write down similar laws of
reflection en refraction?

?

?
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Introduction

• Wave scattering by rough surfaces is at the heart of several branches of physics
and engineering: optics, remote sensing, radar technology, environmental
monitoring, communications, non-destructive testing, tissue imaging, laser
therapy, etc...

• There is an extensive literature on wave scattering from rough surfaces and
interfaces, providing numerous approaches to describe these phenomena.

• The main techniques are gathered in the following review papers:
• F. G. Bass and I. M. Fuks, Wave scattering from statistically rough surfaces,

International series in natural philosophy, Elsevier, 2013;
• J. A. Ogilvy, Theory of wave scattering from random rough surfaces, CRC Press,

1991.
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Introduction

Figure: Oil spill detection with remote sensors, K. Pilzis and V. Vaisis, Environmental Science,
Engineering, 2016
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Figure: Nanoscale quantitative surface roughness measurement of articular cartilage using
second-order statistical-based biospeckle, D. Youssef, S. H. Elnaby, H. El-Ghandoor, PLoS
One, 2021



Introduction

Figure: Spaceborne L-Band Synthetic Aperture Radar Data for Geoscientific Analyses in
Coastal Land Applications: A Review, M. Ottinger, C. Kuenzer, Remote sensing, 2020



Introduction

Generalized Snell’s laws can be derived12 for a metasurface.
• Reflexion:

sin(θref )− sin(θinc ) =
λ0c0

2π
dΦ

dx

• Refraction (transmission):

sin(θtr )

c1
−

sin(θinc )

c0
=

λ0

2π
dΦ

dx

Here λ0 the wavelength of the incident wave, and Φ represents a phase discontinuity.
Question: For a rough (random) interface, can we write down similar laws
involving the statistical description of the interface?

?

?

θinc

c1

c0

1N Yu et al. “Light propagation with phase discontinuities: generalized laws of reflection and
refraction”. In: Science 334 (2011), pp. 333–337.

2E. Rousseau and D. Felbacq. “Detailed derivation of the generalized Snell–Descartes laws from
Fermat’s principle”. In: J. Opt. Soc. Am. A 40 (2023), pp. 676–681.
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Physical setting

• A three-dimensional linear wave propagation modeled is considered through the
scalar wave equation:

∆u −
1

c2(x, z)
∂2
ttu = ∇ · F (t, x, z) (t, x, z) ∈ R× R2 × R,

• equipped with null initial conditions

u(t = 0, x, z) = ∂tu(t = 0, x, z) = 0 (x, z) ∈ R2 × R,

• and continuity conditions at the interface.
• The forcing term

F (t, x, z) := Ψ
( t − k0 · x

λ0
,

x
r0

)
δ(z)ez ,

where ez denotes the unit vector pointing in the z-direction.



Physical setting

• The propagation medium consists of two homogeneous subdomains separated by
a randomly perturbed interface around z = zint :

D0 := {(x, z) ∈ R2 × R s.t. z < zint + σV (x/ℓc )} (1)

and
D1 := {(x, z) ∈ R2 × R s.t. z > zint + σV (x/ℓc )}, (2)

where V is a mean-zero stationary random field.
• The velocity field for the wave equation is given by

c(x, z) :=
{

c0 if (x, z) ∈ D0,
c1 if (x, z) ∈ D1.



Physical setting

The mathematical analysis is based on a separation of scales technique. The scales of
interest are:

• the wavelength λ0,
• the typical propagation distance L,
• the beam width r0,
• the correlation/characteristic scale ℓc ,
• the amplitude of the fluctuations σ.

We assume:
• λ0/L ≪ 1 (high-frequency regime);
• r20 /λ0 ∼ L (paraxial/parabolic scaling);
• σ ∼ λ0 (moderate roughness);
• λ0 ≲ ℓc ≲ r0.

For simplicity, we consider the dimensionless scaling

L = 1, λ0 = ε, r0 =
√
ε, σ = ε, and ℓc = εγ ,

with
γ ∈ [1/2, 1] and ε ≪ 1.



Physical setting

• The random fluctuations are assumed to satisfy mixing properties describing the
loss of statistical dependency for V over the interface.

• Formally, for locations x1, . . . , xn ∈ R2, the random variables

V (x1), . . . ,V (xn)

tend to be independent as

min
j,l∈{1,...,n}

|xj − xl | → ∞.

V (x1) V (x2) V (x3) V (x4) V (xn−2) V (xn−1) V (xn)



Physical setting

More rigorously:
• Introduce

α(r) := sup
S,S′⊂R2

d(S,S′)>r

sup
A∈σ(V (x), x∈S)

B∈σ(V (x), x∈S′)

|P(A ∩ B)− P(A)P(B)|,

where
d(S ,S ′) = inf

s∈S
s′∈S′

|s − s′|.

• The value α(r) quantifies the degree of statistical dependency for the random
field V over pair of regions at distance at least r .

• The α-mixing property consists in assuming

α(r) → 0 as r → ∞,

giving a vanishing of the statistical dependency between V|S and V|S′ as the
distance between S and S ′ tends to infinity.



3. Results

3.1 Description of the specular components

For simplicity, we only focus on the reflected component.



Description of the specular components

The specular reflected wave front is given by:

Uref (s, y) := lim
ϵ→0

uϵ,ref
(
tϵobs,ref (y) + ϵs, xobs,ref +

√
ϵ y, z = 0

)
where tϵobs,ref (y) = 2zint/(c2

0 s0) +
√
ε k0 · y and

xobs,ref = 2k0zint/s0 = 2xint

with s0 :=
√

1 − c2
0 |k0|2/c0.

From the observation points, we can derive the standard Snell’s law of reflection
and refraction.



Description of the specular components

For a flat interface, the reflected wave front profile is given by

Uref (s, y) =
R

2(2π)3

∫∫
e−iω(s−q·y)Û0(ω, q, 2zint)Ψ̂(ω, q)ω2dωdq,

where R is a reflexion coefficient. Here,

Û0(ω, q, z) := e−iωzc0qTA0q,

where A0 is defined by

A0 :=
1

2c3
0 s

3
0

(
I2 − c2

0 k⊥0 (k⊥0 )T
)
.

U0(ω, ·, ·) is the solution to the paraxial wave equation in homogeneous media.



Description of the specular components

Assuming ℓc ∼ r0 (γ = 1/2), the wave front profile reads

Uref (s, y) :=
R

2(2π)5

∫∫∫∫
e−iω(s−2s0V(y′)−q·y)e iω(q′−q)·y′

× Û0(ω, q, zint)Û0(ω, q′, zint)Ψ̂(ω, q′)ω4dωdy′dq′dq,

where V is a random field with the same law as the original fluctuations V .
In this case, the L2 of Uref is "conserved", all the energy is carried by the
specular component described by the standard Snell’s law.



Description of the specular components

Assuming λ0 ≲ ℓc ≪ r0 (γ ∈ (1/2, 1]), the wave front profile reads

Uref (s, y) =
R

2(2π)3

∫∫
e−iω(s−q·y)Û0(ω, q, 2zint)Ψ̂(ω, q)ϕV (2ωs0)ω2dωdq,

where
ϕV (u) = E

[
e iuV (0)]

is the characteristic function of the elevation V (0).
• The reflected wave front profile is similar to the one obtained for a flat interface.
• Compared to the previous case ℓc ∼ r0, the scattering operator is here

homogenized,

E
[ ∫

e iω(q′−q)·y′e2iωs0V(y′)dy′
]
= δ(ω(q′ − q))ϕV (2ωs0).

• The L2 norm of Uref is no longer "conserved", some energy is missing in the
specular component.



3. Results

3.2 Description of the diffusive (incoherent) components



Description of the diffusive components
Specular
reflection

Location of the 
specular component

Location where
the speckle profile 
is analyzed

The reflected speckle profile refers to the following reflected wavefield

Sϵ,ref
s̄,ȳ,y(s̃, ỹ) := ϵ−2(γ−1/2)uϵ,ref (tϵobs,ref (s̄, ȳ, y, ỹ) + ϵs̃, xϵobs,ref (ȳ, y) + ϵγ ỹ, z = 0),

observed at time

tϵobs,ref (s̄, ȳ, y, ỹ) := tobs,ref + ϵ1−γk0 · ȳ +
√
ϵ k0 · y + ϵγk0 · ỹ + ϵ2(1−γ) s̄.

and position
xϵobs,ref (ȳ, y) := xobs,ref + ϵ1−γ ȳ +

√
ϵ y.

• The observation point and time exhibit extra terms in ϵ1−γ and ε2(1−γ)

corresponding to the roughness parameter λ0/ℓc ∼ r20 /ℓc .
• The order of magnitude of the speckle can be understood as spreading a beam

width of order r0 over a two dimensional spatial window of order r20 /ℓc .



Description of the diffusive components
Proposition
The two-point correlation function of the speckle profile

C
ϵ,ref
s̄,ȳ,y(s̃1, ỹ1, s̃2, ỹ2) := Sϵ,ref

s̄,ȳ,y(s̃1, ỹ1)S
ϵ,ref
s̄,ȳ,y(s̃2, ỹ2).

converges in probability in S′(R× R2 × R2 × R× R2 × R× R2) to

lim
ϵ→0

C
ϵ,ref
s̄,ȳ,y(s̃1, ỹ1, s̃2, ỹ2) = Cref

s̄,ȳ(s̃1 − s̃2, ỹ1 − ỹ2),

where

Cref
s̄,ȳ(s̃, ỹ) :=

R2

4(2π)3

∫∫
e−iω(s̃−p·ỹ)A(2s0, ω, p)|Ψ̂|22(ω)δ(s̄ − srefp )δ(ȳ − yrefp )ω2dωdp,

with
A(v , ω, p) :=

∫
E
[
e iv(V (y)−V (0))]e−iωp·ydy,

and

|Ψ̂|22(ω) :=
ω2

(2π)2

∫
|Ψ̂(ω, q)|2dq.

We also have,

yrefp := 2zintc0A0p and srefp := p · yrefp /2 = zintc0pTA0p ≥ 0.



For a given position ȳ, we have

Cref
s̄,ȳ(s̃, ỹ) =

R2c2
0 s

4
0

4(2π)3z2
int

δ
(
s̄ −

ȳTA−1
0 ȳ

2zintc0

)
×

∫
e−iω(s̃−ȳTA−1

0 ỹ/(zint c0))|Ψ̂|22(ω)A
(
2s0, ω,

A−1
0 ȳ

zintc0

)
ω2dω,

with
A−1

0 = c0s0(I2 − c2
0k0 ⊗ k0).

The observation time to observe the speckle outside the specular cone is given by

s̄ = ȳTA−1
0 ȳ/(2zintc0) ≥ 0.

The temporal duration of the speckle is of order the initial pulse duration
characterized by the variable s̃.



Statistics of the diffusive components

• Let us focus on the speckle along the ellipses

Ŝ
ϵ,ref
s̄,ȳ,y (ω, p) := Ŝϵ,ref (s̄, ȳ, y, ω, p)

1
ϵ3(γ−1/2) φ

1/2
(
2

s̄ − srefp

ϵ2(γ−1/2) , 2
ȳ − yrefp

ϵ2(γ−1/2)

)
,

by windowing of the signal through the function φ.
• This is equivalent to a smoothing of the speckle which is required for technical

reasons.



Statistics of the diffusive components

Theorem
For n ≥ 1 and any fixed y1, . . . , yn, the family (Ŝϵ,ref

y1 , . . . , Ŝϵ,ref
yn )ϵ converges in law to

a limit (Ŝref
1 , . . . , Ŝref

n ) made of n independent copies of a complex mean-zero
Gaussian random field with covariance function

E[Ŝref (s̄1, ȳ1, ω1, p1)Ŝ
ref (s̄2, ȳ2, ω2, p2)] = K̂ref (s̄1, s̄2, ȳ1, ȳ2, ω1,−ω2, p1, p2)

E[Ŝref (s̄1, ȳ1, ω1, p1)Ŝref (s̄2, ȳ2, ω2, p2)] = K̂ref (s̄1, s̄2, ȳ1, ȳ2, ω1, ω2, p1, p2)

where the kernel K̂ref is given by

K̂ref (s̄1, s̄2, ȳ1, ȳ2, ω1, ω2, p1, p2) =
(2π)3R2

4
A(2s0, ω1, p1)|Ψ̂|22(ω1)φ̂(ω1, p1)

× δ(s̄1 − srefp1 )δ(ȳ1 − yrefp1 )δ(s̄1 − s̄2)δ(ȳ1 − ȳ2)

× δ(ω1 − ω2)δ(p1 − p2).



Statistics of the diffusive components

Denote

Sϵ,ref
y (s̄, ȳ, s̃, ỹ) :=

1
(2π)3

∫∫
e−iω(s̃−p·ỹ)Ŝϵ,ref

y (s̄, ȳ, ω, p)ω2dωdp,

the inverse Fourier transform of the windowed speckle.

Theorem
For n ≥ 1 and any fixed y1, . . . , yn, the family (Sϵ,ref

y1 , . . . ,Sϵ,ref
yn )ϵ converges in law to

a limit (Sref
1 , . . . ,Sref

n ) made of n independent copies of a mean-zero Gaussian random
field with covariance function

E[Sref (s̄1, ȳ1, s̃1, ỹ1)S
ref (s̄2, ȳ2, s̃2, ỹ2)] = Kref (s̄1, s̄2, ȳ1, ȳ2, s̃1 − s̃2, ỹ1 − ỹ2)

where the kernel Kref is given by

Kref (s̄1, s̄2, ȳ1, ȳ2, s̃, ỹ) =
R2c2

0 s
4
0

4(2π)3z2
int

∫
e−iω(s̃−ȳTA−1

0 ỹ/(zint c0))|Ψ̂|22(ω)

×A
(
2s0, ω,

A−1
0 ȳ

zintc0

)
φ̂
(
ω,

A−1
0 ȳ

zintc0

)
ω2dω

× δ
(
s̄1 −

ȳT1 A−1
0 ȳ1

2zintc0

)
δ(s̄1 − s̄2)δ(ȳ1 − ȳ2).



Generalized Snell’s laws
From the observation point yrefp := 2zintc0A0p, we derive the generalized Snell’s laws
for the speckle diffusive components

sin(θref (p)) = sin(θinc ) + Eref (p) and
sin(θtr (p))

c1
=

sin(θinc )

c0
+ Etr (p).

For λ0 ≪ ℓc (γ ∈ (1/2, 1)), they can be rewritten as

sin(θref (p)) ≃ sin(θinc ) +
λ0

ℓc

c0p · k̂0

π
and

sin(θtr (p))
c1

≃
sin(θinc )

c0
+

λ0

ℓc

p · k̂0

π

where k̂0 = k0/|k0|, and p is distributed according to

A(v , ω, p) =

∫
E[e iωv(V (y)−V (0))]e iωp·ydy ,

with

vref =
2 cos(θinc )

c0
and vtr =

cos(θinc )

c0
−

cos(θ0
tr )

c1
.

This formulation makes the bridge between two approaches in the physical literature34.

3A. Santenac and J. Daillant. “Statistical aspects of wave scattering at rough surface”. In: X-ray and
Neutron Reflectivity, Lecture Notes in Physics. Ed. by J. Daillant and A. Gibaud. Vol. 770. Springer,
Berlin, Heidelberg, 2009, pp. 59–84.

4Yu et al., “Light propagation with phase discontinuities: generalized laws of reflection and
refraction”.



Generalized Snell’s laws

• From the generalized Snell’s relations, the reflection and transmission angles can
be approximated by

θref (p) ≃
λ0≪ℓc

θinc +
λ0

πℓc

p · k̂0

cos(θinc )
and θtr (p) ≃

λ0≪ℓc
θ0
tr +

λ0

πℓc

p · k̂0

cos(θ0
tr )

,

providing small deviations from the specular refraction and transmission angles of
order λ0/ℓc ∼ r20 /ℓc .

• For a null incident angle, θinc = 0, the generalized Snell’s relations read

θref (p) = arctan
(λ0c0|p|

πℓc

)
and θtr (p) = arctan

(λ0c1|p|
πℓc

)
.



Generalized Snell’s law
For the rough case λ0 ∼ ℓc .

• The corrections in the generalized Snell’s law depend on p · k̂0 and p · k̂⊥0 .
• For the numerical illustration we consider

p = β1k0 + β2k⊥0 with (β1, β2) = r(cos(φ), sin(φ)).



Comparison with diffraction grating

• Diffraction grating:

sin(θref ) = sin(θinc ) +m
λ0

d
m ∈ Z,

where d is the distance between successive grooves.
• Scattering by a rough interface

sin(θref (p)) ≃
λ0≪ℓc

sin(θinc ) +
c0p · k̂0

π
·
λ0

ℓc



Some ideas of the proofs

From the α-mixing assumption,

α(r) → 0 as r → ∞,

where
α(r) := sup

S,S′⊂R2

d(S,S′)>r

sup
A∈σ(V (x), x∈S)

B∈σ(V (x), x∈S′)

|P(A ∩ B)− P(A)P(B)|,

One can show that for n bounded functions f1, . . . , fn: R → C, and distinct
x1, . . . , xn ∈ R2

lim
η→0

E
[ n∏
j=1

fj

(
V
( xj
η

))]
= lim

η→0

n∏
j=1

E
[
fj

(
V
( xj
η

))]
=

n∏
j=1

E
[
fj
(
V (0)

)]
.



Some ideas of the proofs

Denoting the wave front

Uε,ref (s, y) := uϵ,ref
(
tϵobs,ref (y) + ϵs, xobs,ref +

√
ϵ y, z = 0

)
where tϵobs,ref (y) = 2zint/(c2

0 s0) +
√
ε k0 · y and

xobs,ref = 2k0zint/s0 = 2xint .

In the case ℓc ≪ r0 (γ > 1/2), we have

E[Uϵ,ref (s1, y1, ỹ1)U
ϵ,ref (s2, y2, ỹ2)]

=
R2

4(2π)10

∫
· · ·

∫
e−iω1(s1−q1·y1)e−iω2(s2−q2·y2)

× E
[
e2iω1s0V (xint/ϵ

γ+y′1/ϵ
γ−1/2+ỹ1)e2iω2s0V (xint/ϵ

γ+y′2/ϵ
γ−1/2+ỹ2)

]
. . . dω1dω2dy′1dy′2dq′1dq′2dq1dq2.



Some ideas of the proofs

Denoting the wave front

Uε,ref (s, y) := uϵ,ref
(
tϵobs,ref (y) + ϵs, xobs,ref +

√
ϵ y, z = 0

)
where tϵobs,ref (y) = 2zint/(c2

0 s0) +
√
ε k0 · y and

xobs,ref = 2k0zint/s0 = 2xint .

In the case ℓc ≪ r0 (γ > 1/2), we have

E[Uϵ,ref (s1, y1, ỹ1)U
ϵ,ref (s2, y2, ỹ2)]

=
R2

4(2π)10

∫
· · ·

∫
e−iω1(s1−q1·y1)e−iω2(s2−q2·y2)

× E
[
e2iω1s0V (xint/ϵ

γ+y′1/ϵ
γ−1/2+ỹ1)

]
E[e2iω2s0V (xint/ϵ

γ+y′2/ϵ
γ−1/2+ỹ2)

]
. . . dω1dω2dy′1dy′2dq′1dq′2dq1dq2.

≃ E[Uϵ,ref (s1, y1, ỹ1)]E[Uϵ,ref (s2, y2, ỹ2)]



Some ideas of the proofs

One can also show that for n bounded functions g1, . . . , gn: R2 → C, y1, . . . , yn ∈ R2,
and distinct x1, . . . , xn ∈ R2,

lim
η→0

E
[ n∏
j=1

gj

(
V
( xj
η

+
yj
2

)
,V

( xj
η

−
yj
2

))]
= lim

η→0

n∏
j=1

E
[
gj

(
V
( xj
η

+
yj
2

)
,V

( xj
η

−
yj
2

))]

=
n∏

j=1

E
[
gj

(
V
( yj

2

)
,V

(
−

yj
2

))]
.

In the case ℓc ≪ r0 (γ > 1/2), we have

lim
ϵ→0

E
[〈
Ŝϵ,ref

y , ϕ
〉2n
S′,S

]
=

n!

2n
σ2n
ref = E[

〈
Ŝref

y , ϕ
〉2n
S′,S ].

and
lim
ϵ→0

E
[〈
Ŝϵ,ref

y , ϕ
〉2n+1
S′,S

]
= 0.



Thank you!


