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Wave interactions with subwavelength structures
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Resonance in air at 80 cm; diameter 6.5 cm

® Subwavelength resonances <= High-contrast regime + Long-range interactions.
® Discrete approximations; Capacitance matrix formulation;

® Wave localisation and transport at subwavelength scales: wireless
communications; biomedical superresolution imaging; quantum computing.
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Mathematical models

® Reciprocal and non-reciprocal transport and wave localisation.

® Mathematical foundations: topological interface modes; Anderson localisation;
time-modulated systems, non-Hermitian skin effect; localisation in disordered
systems.

® Silvio Barandun (ETH), Jinghao Cao (Caltech), Bryn Davies (Warwick), Brian
Fitzpatrick, Xin Fu (Tsinghua), David Gontier (ENS, Paris), Erik Hiltunen
(Univ. Oslo), Wenjia Jing (Tsinghua), Thea Kosche (ETH), Hyundae Lee (Inha
Univ.), Ping Liu (Zhejiang Univ), Liora Rueff (ETH), Sanghyeon Yu (Korea
Univ.), Hai Zhang (UST, Hong Kong), Alexander Uhlmann (ETH).

® Mathematical theories for metamaterials: From condensed matter theory to
subwavelength physics. NSF-CBMS Regional Conf. Ser., AMS 2025.
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Subwavelength resonance problem
® Di,Dy,...,Dy CRY, de{2,3}, NeN: disjoint, connected bounded sets with
boundaries in C1»* for some 0 <'s < 1; D = U | D;.

® v;: wave speed in resonator D;; k; = w/v;: wave number in D;, where
w € R,w # 0,: operating frequency; v and k = w/v: wave speed and wave
number in the background medium.

® Scattering problem:

Au+k*u=0 in RY\ D,
Au+k*u=0 inD;, fori=1,...,N,
ul+ —ul-=0 on 9D,
;%+—%_:0 on dD; fori=1,...,N,
u — ujy satisfies an outgoing radiation condition.

® High contrast regime 0 < § < 1:
v,v;i = O(1),6; = O(9), fori=1,...,N.
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Subwavelength resonance problem

® Finite collection of resonators:

@
o

® Subwavelength resonant frequency: Given § > 0, a subwavelength resonant
frequency w = w(d) € C:

(i) there exists a non-trivial solution to the scattering problem with
uin = 0, known as an associated resonant mode;
(i) w depends continuously on § and satisfies w — 0 as § — 0.
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Capacitance formulation of the resonance problem

® For sufficiently small § > 0, there exist N subwavelength resonant frequencies
w1(d),...,wn(d) with non-negative real parts.

® Generalised capacitance matrix:

v1251
D
C=VC, V=
VI%I(SN
[Dy|
. . ' oy,
® Capacitance matrix of D: Cjj := / VV;-VV;dx = 7/ —
R3\D op; Ov |
AV, =0 in R3\ D,
V,' = (5,'1' on BDJ-,

Vi(x) = O (Ix|™1)  as |x| = oo
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Capacitance matrix of a finite system

® C: symmetric; positive definite;

® Ci<Oforany 1 <i#j<N,;

® ( strictly diagonally dominant:

Cii > Z|CU| forany 1 <i <N,
J#i
® C: nonsingular Minkowski-matrix = C~!: Minkowski-matrix; principle minors of
C: positive.
® Dilute expansion: D; = eB; + zj,e — 0:
Cii = eCapg, + O(e3),

62Cap3’_ Caij

Cj=— +0O(83), fori#j;

Ar|z; — zj|
® Decay property for N large enough:
1
G|l L ——n—.
Gl 5 dist(D;, Dj)

* = CI.E.N) < C,.S.NH); For i = j = diagonal capacitance coefficients increase when

adding additional resonators.
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Capacitance formulation of the resonance problem

® As$ — 0,
wWn =V An—iTn +0O(8%?), n=1,...,N;
® )\, forn=1,...,N: eigenvalues of C;

® Foreachn=1,...,N, V), = 0(51/2) and 7, = O(9) as § — 0;
® v,: eigenvector of C associated to A\, = resonant mode u, associated to wy.
* m(vi=ww=---=vyand d =dh =---=dy):

v vl CJCv,

=0 — -2+ — —
"8 Tl

® J: N x N matrix of ones; v,: eigenvector associated to Ap;
1/2
Ixllp == (N, |Di|x2)*? for x € RV.

® V complex = C: may not be diagonalisable < exceptional point degeneracy
may occur.
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Capacitance formulation of the resonance problem

® Single resonator:

Capp N Cap%)vl2 3
= o — é O62);
w1 b Vo gaup ) HOC2)

=Wy =TM

® Monopole approximation:
u*(x) == (u— uin)(x) = g(w, 8, D)(1 + o(1))uin(0)G*(x); 0 € D;
® Scattering coefficient = Scattering enhancement near wy:

Capp

,0D) = ——F—
£(.0.D) 1= (ZM)2 Fiyy

® Damping constant:

_ w(v+wv)Capp (v—w) Sv1Cap?
™= 8mvvy v 8n|Djw
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Capacitance formulation of the resonance problem
® Parity-symmetric dimer (with respect to 0):

w1 = /(C1 + Cr2)viVé —imd + O(6%/2);
—_————

=wm

w2 = V/(Cu1 — G2)w V8 +5°/%1 + 1877 + O(8°/2);
—

=Wy 2

® 71, 7>: real numbers determined by D, v, and vq;

v 2

71 = —(Ci1 + Ci2)°.

4mv
® w; and wp: monopole and dipole hybridised resonances of the resonator dimer D.
® wy1 < wm,2; Swy = 0(5) while Swy = 0(62)
® Point scatterer with resonant monopole and resonant dipole modes:

8°(w)uin(0)G¥(x) + Vuin (0) - g' (w)VG*(x) .

monopole dipole
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Capacitance formulation for nonlinear systems

® Nonlinear model:

Au+kPu=0 in R4\ D,

Au+ kPu+ Big(w)f(u)=0 inD;, fori=1,...,N,

ulf —ul-=0 on 0D,
;%+7%_:0 ondD; fori=1,...,N,
u satisfies an outgoing radiation condition.

® Kerr-type nonlinearity: g(w) = |w|?w; f(u) = |u?u.
|u[?

L+ [uR)”

® One-to-one correspondence between the subwavelength resonant frequencies and
the solutions to

® Saturable nonlinearity f(u) =

q B1f(q1)

@ Baf(q2) 1
Cc—w?) | . | +gw)Vv? . =0; Vj:=—1d

X X J

an Bnf(an)
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Capacitance formulation for nonlinear systems

® Nonlinearity —Bw?|ul?u.

* Cqg—w?(q—BV?ql?q) = 0.

® D = Bj U By: preserved under the mirror symmetry P(x1, x2, x3) = (x1, X2, —x3)
and P(B;1) = P(B;) = for all a € C,

s () o= (2)

C11 +Ca2 and  wy = C11 — Co2

with

wo =

® If (wo, qo): solution =

(wo,po)  with poz((%h)

(90)1

solution and the phase of (pp)1/(po)2: conjugate to the phase of (go)1/(q0)2.
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Capacitance formulation for nonlinear systems

® Nonlinearity-induced subwavelength resonant frequencies:

Radii 1y = 02, 7, = 0.2 Radii 1y = 0.2, r, = 022
02 02 ’

015 015

Phase coloring
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Capacitance formulation for time-modulated systems

® Time-modulation of the resonators:

w(x, ) = K, xeRd\E, p(x,t) = 0, xeRd\E,
’ Hrl{,'(t), X € D,'7 ’ ’

prpi(t), x € Dj.
® pi(t), ki(t): modulation inside D;; p;, kj: periodic with period T;
® Findw e Y* :=C/(QZ; Q= (2n)/T = O(6%/?).

o 1 9 1
(& K(x, t) a -V o(x, 1) V> u(x,t) =0,

u(x, t)e ™t is T-periodic in t.

® A quasifrequency is a subwavelength quasifrequency if the corresponding solution
is essentially supported in the subwavelength frequency regime.
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Capacitance formulation for time-modulated systems

® (Capacitance matrix formulation of the problem:

® As § — 0, the quasifrequencies w € Y} are, to leading order, given by
the quasifrequencies of the system of ordinary differential equations:

N

d /1 dy
> Gix(t) = -IDil (ﬁ dt)’
j=1 H

fori=1,...,N. (y;(t) = “'3, yj,ne™).
® Rewrite as a system of Hill equations:

W (t) + M(t)W(t) = 0.
® Compute the Floquet exponents of the Hill system of equations.
® If 5;v7 independent of t for i = 1,..., N (= 6v?):

W(t) +CW(t) =0.

® — Static case: Quasifrequencies w; = /\; at leading order in §.
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Capacitance formulation for time-modulated systems

® The two subwavelength quasifrequencies of a pair of PT-symmetric,
time-modulated resonators;

® ki1(t) =1+ esin(Qt); ko(t) =1 — esin(Qt);

® Exceptional point in the time-modulated case: € =~ 0.3.
0.025 -

0.02 -

=}

o

=

I3
T

0.005

Quasirequency w
j=1
=
=4
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Modulation strength e
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Capacitance formulation for infinite periodic systems

® d;: dimension of periodicity of the lattice. d: dimension of the ambient space.

® Three different cases: @ @ @
® d—d =0: crystal; OQ OO OO

® d—d = 1: screen;
® d — d; = 2: chain.
® A: periodic lattice; Y: fundamental domain; A*: dual lattice of A; Brillouin zone
Y* = (R% x {0})/A*; 0: zero-vector in RI=%; x = (x;, x0).
® p;:RY — RY: projection onto the first d; coordinates;
P, : R? — R¥¥: projection onto the last d — d; coordinates.

® I,..., Iy € RY: lattice vectors generating the lattice A; P J; = 0;
A ::{m1/1 + -4 md,ld, | m; € Z}

® A*: generated by au,...,aq s.t. ;- lj = 2mwd; and PLa; = 0.

o YZ:{C1/1+ +Cd//d,‘O<C1...., ,Sl}.

® Periodically repeated it" D; and the full periodic structure D:

N

= D,-er, D= D,‘.
i=1
i=

meA
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Capacitance formulation for infinite periodic systems

® Square lattice and corresponding Brillouin zone:

Subwavelength physics
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Capacitance formulation for infinite periodic systems

® |nfinite periodic structure:

N
D™ = D; + m, D= J Di+m, D =D
men i=1
® Resonance problem:
Au+ Kk*u=0 in RY\ D,
Au+ku=0 inDj, i=1,...,N,
ul+ —ul-=0 on 0D,
,-@ — @ =0 ondD;, i=1,...,N,
ov|, Oov|_
u(x;, x0) satisfies the outgoing radiation condition as |xp| — co.
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Capacitance formulation for infinite periodic systems

® f(x) € L2(RY): a-quasiperiodic, with quasiperiodicity o € Y*, if e~ 1 *f(x):
N-periodic;

® Floquet transform of f € L2(RY):

Ufl(x,a) ==Yy f(x —m)e ™™ x,a € RY.
men

® U[f]: a-quasiperiodic in x and periodic in a.

® Floquet transform: invertible map U : L2(R?) — L?(Y x Y*), with inverse given
by

U tgl(x) =

1
\v*|/y g(x,a)da, x €RY,
)y

g(x, a): extended quasiperiodically for x outside of the unit cell Y.
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Capacitance formulation for infinite periodic systems

® u%(x) :=U[u](x, ):
Au® 4+ K2u® =0 inRY\ D,
Av* +KPu*=0 inDj, i=1,...,N,

u®¥|f —u*|—= =0 on dD,

ou® ou®

L %Y 0 onaDpy, i=1,...,N,
ov |, ov |_

u®(xy, x0) is a-quasiperiodic in x;,

u®(x, xo) satisfies a-quasiperiodic radiation condition as |xp| — 0.

® Spectrum o: parameterised by the spectra o(a), a € Y*, of the Helmholtz
resonance problem, which in turn are known to consist of discrete values

w = w:
oo
o= U o(a), cr(a):Uw”’
agy* i=1

® Subwavelength part of the spectrum: resonant frequencies w® — 0 as § — 0.
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Capacitance formulation for infinite periodic systems

® Generalised quasiperiodic capacitance matrix for o # 0:

0V} v -
G =or G G, TV b =L N
® V& i=1,...,N, solutions
AV® =0 in Y\ D,
Ve = on 9D;,
VE(x+1)=e>Va(x) VIeA,
V& (x) =0 as |xp| — oo,

with x = (X, xp)-
® |a| # 0 fixed; § — O:

wy = VAT +0(Y?), n=1,...N;

e (A2 :n=1,...,N}: eigenvalues of C* € CNXN which satisfy A3 = O() as
d—0.

® Resonant modes uf < v&': eigenvector of C%.

® Reciprocity: if V a € Y*, the set of quasifrequencies at @ = the one at —a.
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Subwavelength bandgap opening

® Subwavelength bandgap opening in square crystals:

e 125 - '
' r X 0 2 o

i | 15

! ! 1 Bandgap
_______ L o oooon o

® Two-scale behaviour of the resonant mode for « close to (m, 7): rapidly
oscillating on the crystal scale, and a large-scale envelope which satisfies a

homogenised equation.
M[ \f
\ I \

- I Al
- M J‘ﬂ
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Honeycomb lattice of subwavelength resonators

® Honeycomb lattice:

@)

&

QX0 Yot
00 QB> Q0

QOO @

Q0 o3

® At o = o, the first eigenfrequency w* := w(a™*) of
multiplicity 2.

Sub-wavelength bands for the bubble structure
3

® Conical behavior of subwavelength bands: The first
band and the second band form a Dirac cone at a*,

wi(a) = w(a®)=Ala —a’|[1 4+ O(la — a™[)],
wa(a) = w(a®)+AJa — " |[1 4+ O(la — a™[)];

A= e[V6Xo# 0; ¢ = 9C*2 /B | _ . |
Ao = (1/2)4/ v} /(ID1|CY"). v * T

® Dirac point at a = a*.

Subwavelength physics Habib Ammari



Honeycomb lattice of subwavelength resonators

® s : size of the unit cell; For « close to a*,

eigenmodes: 02 i
01 (x)S1(%) + d2(x)S2(%) + O(6 + s); HWH }MWM
® Effective equation: i satisfies ;;U:] WWUJJ ‘ J’\MMH \J
|c?A3 A8 + S 75&)*)2 =0 Hj\“ H M \

® Dirac equation:

ho (*Ef)((i;)l ) (_d)(aol - 162)} [lﬂ Sk [L:'l} :

® Zero-phase shift propagation.

® Time-evolution of wave packets spectrally concentrated near conical points:
time-dependent effective Dirac system.
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Subwavelength trapping and guiding of waves

® Introduce a defect to a periodic arrangement of subwavelength resonators.

000 00000
ORI D Dl

000 00000

® Create a defect mode or a defect band inside the subwavelength band gap of the
unperturbed structure.

® Defect band within the subwavelength band gap: large perturbation of the
radius; localised to and guided along the line defect <= Absence of bound modes.
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Topological interface defects

® Sensitivity to imperfections in the crystal's design:

0.3 0.31
....... 03
025F T .
’ 0.29
0.2 4 3
2028
3 015 1 Zoar
£
0.1 0.26,
S 025 1
0.05 R 4
0.24 .
0 ™ 2
X M r X Quasiperiodicity a

® Goal: design subwavelength wave guides whose properties are robust with
respect to imperfections.

® |dea: Topological invariant which captures the crystal's wave propagation
properties.
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Topological interface defects

® Bulk-boundary correspondence:

® Take two crystals with topologically different wave propagation
properties (different values of the topological invariant);

® Join half of crystal A to half of crystal B;

® At the interface, a topologically protected interface mode will exist.
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Topological interface defects

® An infinite chain of resonator dimers:!

Y

Dy

v &m

d

7 AW

|
!
|
|
|
|
|
|
|
|
|
T
!

d/

Two assumptions of geometric symmetry:
® Dimer is symmetric, in the sense that D(:= D; U Dy) = —D;

® Each resonator has reflective symmetry.

1 Analogue of the Su-Schrieffer-Heeger model in topological insulator theory in
quantum mechanics.
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Topological interface defects

® Band inversion occurs between d < d’ and d > d’; Monopole/dipole natures of
the 15t and 2" eigenmodes have swapped between d < d’ and d > d’ regimes;
Dirac degeneracy precisely when d = d’.

w w w

d<d © d—d d>d

No band inversion Dirac cone Full band inversion
d<d d>d

yraxis
y-axis
y-axis
y-axis

40
/L. /L
UI i ‘
10
. 2 -20 -10 0 10 20

z-axis

z-axis




Topological interface defects

® Change in the argument of C[% as «a varies over Y™ quantised:

o= lara(CB)ly-
® The Zak phase:
vy = / i An(a) da;  Y* =R/27Z ~ (—m, ] (first Brillouin zone);
® Berry-Simon connection:

0
An(a) := i/ ulf—ue dx; n=1,2.
p O«

® The cases d > d’ and d < d’ have different Zak phases.
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Topological defects
® Finite chain of resonators: robust localised eigenmode
vr=0 =7
OO O O
R/J \//
R — —

OO0 OO OO O OO OO OO

d d d d

0 200 400 600 800 1000
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Edge modes in a dislocated chain

® Introduce a dislocation (with size d > 0) in an array of pairs of subwavelength
resonators having subwavelength band gap to create midgap frequencies.
00 0O OO O‘O OO0 OO0 O0O0O---

00 00 00 0, "0 00 00 00O:--

® As d increases, a midgap frequency appears from each edge of the
subwavelength band gap. These two frequencies converge to a single value
within the subwavelength band gap as d — oo.

A
w

midgap frequencies

subwavelength band gap

regime

~
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Topological properties of Hermitian systems

® Two edge modes for an array of 42 spherical resonators of radius 1; edge mode
of the corresponding ‘half system':
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Anderson localisation

® Strong localisation in randomly perturbed systems with long-range interactions.
® A: lattice of dimension 1 < d; < d;

D:U U D, D™ = D; + m, D
menie{L,...,N} ie{1,...,N}

I
C
?

® Real-space capacitance matrix:

C" =u"tc|(m), meA.

® Discrete Floquet transform:

Ugl(a) ==Y _ d(mye ™™, U P)(m) =

meA

P(a)e '™ da.
|Y*|/

® Characterisation of localisation:

Bmzcm [T m7

nen

for every m € A (real-space variable); u™ € RN: Bm: N x N diagonal matrix
whose ith entry is given by b =1+ x™; x/": random perturbation of the
material parameter of the resonator i in the cell m; uniform distribution

Ulx — V30, x + \/50].
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Laurent-operator formulation

* IfA=17,
Beu = w’u.

® Doubly infinite matrices and vectors:

O ol ¢ 3. w1 e B_1 0 0 0 -

_ .7l 0 el o2l _ 0 _ e 0 By 0O 0 -
¢= .c72¢c7t 0 et | u= ul » B= .+ 0 0 By 0 -
0 0

.c3¢c2¢c 10 u?

® ¢: (block) Laurent operator corresponding to the symbol C*.
® A localised mode corresponds to an eigenvalue of the operator ‘B€.

® In the periodic case (when B = [), the spectrum of the Laurent operator € is
continuous and does not contain eigenvalues, so there are no localised modes.

® The operator B& might have a pure-point spectrum in the non-periodic case.
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Toeplitz matrix formulation for compact defects

® Compact defects: By, are identity for all but finitely many m; 0 < m < M.
® Xp,: diagonal matrix with entries xi’".

® (Block) Toeplitz matrix formulation: w corresponds to a localised mode iff

det(/ — XT(w)) =0.

® X: block-diagonal matrix with entries Xp;

70 71 T2 M

-1 70 71 TM—1
T(w) _ -2 -1 70 TM=—2 :

=M =(M=1) 7—(M~-2) 70

[ ]

m 1 iaompa o 21

=—— e'*mC (C —w I) da
Y[ Sy~
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Level repulsion and hybridisation

® | evel repulsion: random perturbations = average value of each midgap
frequency to move further apart and further apart the edge of the band gap

—%—Upper localized frequency ~ —=—Lower localized frequency
2 0.198
= 0197
0.196
00
=
0.00 0.015 0.02

5 0.01
Perturbation size o

® Hybridisation = sharp peak at the transition point in the degree of localisation

0.2

0.9

Frequency
-
&

0.05 07

Standard deviation o

0.4 02 04 06

0 0.1 02 03 04 1 0.2 03
Perturbation size =

Perturbation size = Perturbation size =

Habib Ammari
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Spectral convergence in large finite resonator arrays

® Pointwise convergence to the essential spectrum: Any eigenvalue/eigenvector of
C® can be approximated by eigenvalues/eigenvectors of C¢; Converse not true:
edge effect = greatest effect on eigenmodes within the first radiation continuum.

® Convergence in distribution of the discrete density of states for the finite
M-system of N periodically repeated resonators to the (continuous) density of
states of the infinite system:

18

3

g - 00 OO0 OO
g

clg;14
&

+ Discrete
12 ,

—m/L 0 /L
Quasi-periodicity «
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Spectral convergence in large finite resonator arrays

® Weak convergence of C¢ (M x M-block matrix with blocks of size N) to
corresponding (translationally invariant) Toeplitz matrix C; of the infinite
structure with symbol C%:

c® ¢t ...ocM

¢l 0 ... eM-1
Cy =

oM 1M 0

® (¢, Cy asymptotically equivalent: ﬁ”c}f — Ctllr — 0; ||C¢l2, l|Ct |2 uniformly
bounded.

® (C¢,Cy: identical eigenvalue distributions as their sizes — co.
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Spectral convergence in large finite resonator arrays

® Truncated Floquet transform: (wj, u;), (uj)m: vector of length N associated to
cell meA;

@a= D ()me™™ o) = argmax |[(G@)e]lo-
mé&finite lattice agY*

® Defect modes in infinite systems of resonators have corresponding modes in
finite systems which converge as the size of the system increases; Rate of
convergence in terms of the length of the truncated structure:

d) = d = exponential; d; < d = algebraic.

® Principle applicable to structures that are not translationally invariant:

2 -

g
o ™

=
=

Frequency w

+ Discrete +-+00 OO0 O OO OO --
— — Discrete defect
—— Continuous

—_
[

1 I .
—n/L 0 w/L
Quasi-periodicity a
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Disordered systems

® Broken translation invariance: globally or locally;

® Particular classes: quasiperiodic systems; hyperuniform systems; random block
systems.

® Random block systems: Sample S (single resonator block) and D (dimer
resonator block) with resp. probability ps and pp: SSSSDSSSSSDSSS.

® Obtain Bloch band functions for a disordered block structure by imposing
quasiperiodic boundary conditions on the respective finite systems;
® Compute the eigenvalues of the quasiperiodic capacitance matrix
ove
€ (Cf) = = Jop, i do
® N band functions of the system: given by the Bloch band functions
o € Y* — wp(a) mapping a quasiperiodicity « in the Brillouin zone to the pth
eigenvalue of C%.

® Convergence of empirical cumulative density functions under increasing system
size (Jacobi operator; metric transitivity = ergodicity)
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Disordered systems

® Average shift in the band function frequency:

1

6/\,‘ =
2L Joey

(@) — A(0)]dar
® Thouless ratio g(A;) for a given frequency A; of C:

V. T
Ay AR = 5a0r

g(\i) =

D(): density of states (computed using a Gaussian kernel density estimate on
the eigenvalues A1, ..., Ay of C); L: physical length of the system.

® Thouless criterion of localisation:

uiis delocalised if g(\;) = 1,
! localised if g(\) < 1.
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Disordered systems

® (A) periodic, (B) SSH, (c¢) dislocated, and (D) random block system.

N pR— RS p— P we
wrf 2 © i
EI-
15 s 06 L
08 10°
% § 04 oo [Rm—
Quas
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Block disordered systems

Shared pass band
Bandgap
Hybridisaticn regicn

® Band iff it is in the band of all constituent blocks;

® Bandgap iffit is in the bandgap of all constituent
blocks;

® Hybridisation region otherwise.

0 1 2 3
Fraquency A

M =100 M =500

100

102

0t
015 s

[ /[l |2

10

10

10710
00 02 04 06 085 10 00 02 04

Eigenvalue A;
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Capacitance formulation for space-time modulated systems

® \Wave equation in a space-time modulated systems:
1o} 1 0 1
o V-
ot k(x, t) Ot p(x, t)

V) u(x,t) =0, xeRY teR.

® Y: unit cell; D:UmE,\D+m; ’D,-:UmeAD,-er; D;,i=1,...,N.
® Time-modulation of the resonators:

d\ m d\
K(x, t) = n,- x€eR \D,’ p(x, ) = P, x € R\ D,
I{rh,'(t), x € D;,

prpi(t), x € D;.

o
0?0074
s200 3% 04
900 3% 0 3% 0
900 5% 0
098, :
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Capacitance formulation for space-time modulated systems

® Reciprocity: if V a € Y*, the set of quasifrequencies at « = the one at —a.
® Folding of the static band structure might create degenerate points;

® Time modulations break the time-reversal symmetry and open degenerate points
of the folded band structure into non-symmetric bandgaps; opposite propagation
directions: distinct bandgaps.

® Phase-shifted (“rotation like") time modulations of subwavelength resonators
can provide a kind of “artificial spin”.

® Trimer honeycomb lattice with phase-shifted time-modulations inside the trimers:
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Capacitance formulation for space-time modulated systems

® Non-reciprocal wave propagation and k-gaps

0.1

& 0.05

Re(w) and Im(w)

® Non-symmetric bandgaps = unidirectional excitation of the operating waves;
® Existence of k-gaps = exponentially growing wave propagation.

Subwavelength physics
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Non-Hermitian skin effect

® PDE model: D = U,’.V:1 chain of finitely many periodic resonators (in
xi-direction) with a non-Hermitian imaginary gauge potential

Aut+w?lu=0 in R3\ D,
K

Aut iyt yo,u=0 in D;i=1,...,N,
i

ulf =ul— on 8D,

__ Ou

+_31/

pi Ou

Y on 9D,

u satisfies the radiation condition.

® Eigenmodes and eigenfrequencies approximated by the eigenvectors and square
roots of the eigenvalues of the gauge capacitance matrix:

5 §iv? aV;
(C,\/,)i A - / e —Ldo(x).
J /] p, € dx Jop, ov

® Condensation of bulk eigenmodes at one of the edges of the system (depending
on sign(v)) as its size increases.

® “Infinite” order exceptional point.
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Non-Hermitian skin effect

® Eigenvectors of the gauge capacitance matrix are exponentially decaying or
growing, depending on the sign of v:

10 20 30 40 50
Position of the resonators Position of the resonators

v=1 v=-1
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Non-Hermitian skin effect

® Gauge capacitance matrix C7: perturbed Toeplitz structure <= system: almost
translational invariant; dense < long-range coupling;

® (C7: approximated by a banded Toeplitz matrix with a perturbation on the edge.
k—1
j=—(k—1)

o [ a0 o d—k—1 0 0 ]

B . . . .

2 . a0 . : .

. ka1 . - - - 0

! T T T T

. 0 . . . . a_j_1

, . i i ao .

| Lo - 0 amn  a
2 4 6 8 1w 12 1w 1 B @
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® Symbol function: a(z) = a;z.

Q




Non-Hermitian skin effect

® Define T:={z € C: |z| =1} and /(a(T), A) the winding number of a(T) at X in
the positive direction.

® Exponential decay of the pseudo-eigenvectors: predicted by the winding number.
Topological protection of the associated (real) eigenfrequencies.

x107°

Imaginary part
(=}
=

1 2 3 4 5 6 "0 10 20 30 40 50
Real part %1074 Position of the resonators
a(T) and the eigenvalues. Eigenmodes.
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Stability of the non-Hermitian skin effect

® Single realisations with increasing disorder strengths:

1.0 1.0
0.5 0.54
0.0 0.04
—0.5 0.5 4
—1.0 4= T T v —10s T T v T T T v
0 10 20 30 0 10 20 30 0 10 20 30
Site index Site index Site index

® Competition between the non-Hermitian skin effect and the disorder-induced
Anderson localisation;

® As the strength of the disorder increases, more and more eigenmodes become
localised in the bulk.

1.0 4 : 5.0
4.5
084 40 v
35 %
3.0 §
0.6 4 2.5 ‘;
208
041 15 8
102
0.21 0.5
T T T v v v 0.0

0 2 4 0 20 40
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Dimer systems

® Dimer systems = Perturbed Block Toeplitz matrices.

® Fredholm index of the associated operator (= winding of the determinant of its
symbol) takes value zero at some point on the unit circle.

® Winding of the two eigenvalues of the symbol: predicts accurately the
exponential decay of the eigenmodes and is the limit of the pseudospectrum as
N — oco.

© 004

0.5

—1.04

Habib Ammari

Subwavelength physics



Convergence results for non-Hermitian large systems

® Spectrum of the limiting operator: Non-Bloch eigenmodes = generalised
(complex) Brillouin zone

Ve i={(e, B(a)) € Y xR : Aatisle) ¢ R*}; Ao +iB(@) gigenvalue of C7-HA(e),

® Convergence to the complex band structure:

® Systems with complex material parameters can be reduced to Hermitian systems
away from their exceptional points.

® Non-Hermitian systems with imaginary gauge potentials / Non-Hermitian
systems with complex material parameters: fundamentally distinct.
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Generalised Brillouin zone

® T(a): tridiagonal k-Toeplitz operator with symbol a(z) and non-zero
off-diagonal entries

ai b1 0 e 0 CkZ
c1 a b 0
a:.:z—r 0 @
: bi_» 0
0 Ck—2 @k-1 bx—1
ka_l 0 s 0 Ck—1 ay

® Non-reciprocity rate:
K op
A=in] [l
g
j=1

® Generalised Brillouin zone:

5={a+islacl-nm.scp.al)

® o(T(a)) = Uasises o(a(e~1(@+i8))) " up to at most (k — 1) points which may
be in o(T(a)) but not in U, ;gecp o(ale™ (@A),
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Generalised Brillouin zone

® Open boundary conditions = k-Toeplitz matrix T,,x of order mk associated
with the symbol a:

im o(To(@) = | ofa(ei@112/2)),
acY*
® Tk symmetrised = T(&)m; & collapsed symbol (no winding).
® Periodic boundary conditions = tridiagonal k-circulant matrix:
Ck i= O,j = mk,
(C,,,k(a)),-j = bk i= mk,j = 0,
(Tmk(a)); otherwise.

® |aurent operator L associated with the symbol a:

m—1
o(Cmi(a)) = | J a(e®™/m™) — | J a(e™'*) = o(L(a)).
Jj=0 acY*

® Convergence of the pseudo-spectrum:

Jim o(Tk(a) = 0c(T(a)); lim lim_oc(Trk(a)) = lim 0c(T(2)) = o(T(a).

Subwavelength physics Habib Ammari



Generalised Brillouin zone

® Three spectral limits:

(i) Eigenvalues of the circulant matrix Cmi(a) arrange around the
symbol curve = converge to the Laurent operator limit L(a);

(i) Eigenvalues of the Toeplitz matrix Tpm«(a) arrange around the
collapsed symbol 4 = converge to the Laurent operator T(&);
(iii) e-pseudospectrum of T, (a) corresponds exactly to the interior of
the symbol curve = converges to the actual Toeplitz limit T(a).

+

(Tiox2(a))
(Croxa(a)
oc(Tioxa(a)

—(L(a))
— o(L(a)

3 o(T())
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Concluding remarks

® Mathematical foundations of subwavelength physics:

® | ocalisation and topological properties of reciprocal and
non-reciprocal systems of subwavelength resonators;

® Non-reciprocity can be achieved by imaginary gauge potentials but
also by time-modulations.

® Dirac, exceptional point, and folding degeneracies.

® Unified capacitance matrix framework for studying linear and
nonlinear systems with long range interactions in three dimensions.

® Interplay between nonlinearities and Dirac and exceptional point
degeneracies.

® In one dimension: short range interactions = Haldane: “Quantum
phenomena are not particular to quantum systems” .
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