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Wave beam propagation in random media
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Wave-beam propagating in turbulent atmosphere

Receiver reading as turbulence strength increases.
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Speckle formation
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Speckle is manifestation of constructive/destructive interference.
Different applications for (narrow frequency band) laser light.



WICOM Paris June 12, 2025

Speckle patterns
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Heuristics of fully formed Speckle

Fully formed speckle with superposition of random plane waves.
Location z € R? fixed and:

1 M
u(x) = upr + iu; = e
k=1

with ¢y, iid uniform on (0,27) and ay iid mean zero with Ea? = a2. Then

ape'®®,  I(z) = |u(x)|?

2 2 __
» = Eul = —a

Eur = Eu; = Euru; = 0, Eu 5

and in limit M — oo,

1 L (w2442

p(ur,u;) = e az(ur-l-uz)’
mwa

e Exponential distribution of intensity corroborates observed speckle.

e (ur,u;) asymptotically complex circular Gaussian.

e a.? ¢.? M? Correlations at different =7
[Goodman 19; Carminati-Schotland 21]

1 _L
p(I):—Qe 2. EI=EI?=ad°
a
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Heuristic Speckle Formation

Gaussian Conjecture:. speckle patterns form after long-distance propaga-
tion as wavefield becomes complex circular Gaussian distributed:

Real and imaginary parts of field are mean-zero iid Gaussian fields.

Conjecture settled in Itd6-Schrodinger / paraxial regimes of wave propa-
gation. Joint work with Anjali Nair.

B. Nair 2024. Complex Gaussianity of long-distance random wave pro-
cesses. Arxiv arXiv:2402.17107

B. Nair 2024. Long distance propagation of light in random media with
partially coherent sources. Arxiv arXiv:2406.05252.

B. Nair 2024. Long distance propagation of wave beams in paraxial
regime. Arxiv arXiv:2409.09514
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Wave beam propagation
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Wave propagation in z > 0 with Helmholtz model (—i0; — w = ckg):

(02 4+ s + Kk5[1 + v(2,2)]) p(z,2) = §'(2)po().
v(z,x) random perturbation of index of refraction.

po(x) (deterministic) incident source profile.

e r — p(z,x) for z large? Speckle? Scaling-dependent.
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2 2
(02 4+ s + Kk5[1 +v(2,2)]) p(x,2) = §'(2)po().

Parameters:
lo correlati —
0 _Ilatlc?n length v =v({, 7). lo~2 10~ 3m.
ko = A~1 with wavelength A = 107 %m. \ < ;.
wg width of incident source pg = pg(=%). wg ~ 0.05 — 1m

| | wg . .
loZ typical distance of interest, of order 103m.
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Small parameters

lo correlation length v =v(f, 7). lo ~ 10— 3m.
ko = A~1 with wavelength A ~ 10~ °m.

wp width of incident source pg = po(wio). wg =~ 0.05 — 1m.

loZ typical distance of interest, of order 103m.

Define:
1 lo Z > w§

kolo wQ _kow()’ 7 :ng?)'

June 12, 2025

Here o =~ |v| ~ 10~7 — 10~° models fluctuation strength. We find

0~10"3, ex~103-10"1, nx~1072-1.

e (6,e) — 0 model high frequency, weak-coupling, and beam structure.
e £, 0 <Kn=1Iin Kkinetic and ¢,0 < n K 1 in diffusive regimes.

e Optical thickness of medium at z is 77%
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Wave beam propagation

(02 + s+ k3[1 + v(z,2)]) p(2,2) = §'(2)po(a).

With above parameter choices, wave equation along with

1
k €202
z—>% r — x, k0—>—0, vV — —5V
89 0 775
then paraxial envelope u given by
.nknz 2 .nknz
L nz< —7,?7 02 80 2 2 k‘o 277_02 L
u(z,x).-p(g—e,a:)e e6 ((;) 03 +0_2 e 62 =0
solves
]CQ
0 n=

g0\ 2
[( ; )%02 4 2iko: + 1.+ (nge)%v(se,xﬂu —0.
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Paraxial Model in weak coupling regime
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€0\ 2 k2 nz .
(( ; ) 02 + 2iko0- + SA;,; + (ngg)%u<€9,x>)u =0

Assuming (?7> 82u negligible, we obtain the paraxial model

U kg (mz 0 0
(2ikoaz + Az + 0 1V( ,a:))u =0| |u(0,z) =ug(ex)|
€ (neh)? A

e [ his amounts to neglecting backscattering.
e Difficult to justify. d = 1 [Bailly Clouet Fouque 96]; [Garnier Sglna 09]
e Assume ¢ = ¢(0) and n = n(0) to simplify.
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ItOo-Schrodinger approximation

Paraxial model

k2
(Qikoc’?,z 1+ A, + "0 1V(”z,x))u9 —0.
g (ned)2 g0
Formally, from central limit scaling, as = — O,
1
ﬁu(;x)dz ~ dB(z,x).

As 0 — O, Paraxial approximated by Stratonovich-Schrodinger

due’;‘ —

Aa;uedz —|— —u odB, u°(0,z) = ug(ex),
2ko€ n

and after Stratonovich correction by [to-Schrodinger SPDE model

k
udz —|— "0 fdB . u®(0,2) = ug(ex).

[Dawson Papanicolaou 84] [Fannjiang Sglna 04]. Simply false when 6 = 1.
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Paraxial & IS models. Main assumptions.

Paraxial model

k2
(Qikoaz -+ QAQ; -+ 0 I/(nz, x))ue =0, ue(O, x) = ug(ex).

1
€ (neh)?2 g0
[to-Schrodinger SPDE model
] k2R(0 k
duf = — Agufdz — -9 ( )ugdz—l—z—ougdB, u®(0,x) = ug(ex).
2koe 8n2 2n
e Random potential assumed stationary mean zero Gaussian
Elv(z,2)v(Z,2")] = €(z -2,z —2') Short Range

E[B(z 2)B(z.2))] = min(z, 2Rz —2'), R(z) = /R (s, z)ds

R(k) = FR(k) sufficiently integrable with Q@ = V2R(0) negative definite.
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Main Results.

Let w? and uf be solutions of Paraxial and IS models.
Assume incident profile ug(e?z) for 8> 1. (8> 1 ~ plane wave)
Assume ¢ = ¢(0) and n = n(#) with eVN7 < 6 < &7 for v > 0.

Let n = 1 in kinetic regime and n ~ (Inlne~1)~1 — 0 in diffusive regime
(assumed from now on).

For (z,r) fixed, define rescaled random field:

s (2,7, 2) = ue(z, 6% + 77:13).

Theorem. [Gaussian conjecture] As 8 — 0O, and at fixed z > 0 and fixed
re R z— ¢ and x — ¢F converge in law to (the same) complex circular
Gaussian field (with appropriate modifications in Kinetic regime).
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Speckle Scaling

e Let z >0 and r/eP fixed. (8 =1 in above picture.)
e Process z — ¢f(z) = ue(z,g% + nx) complex circular Gaussian as 6 — 0.

e x parametrizes scale of correlation length. Regime \ < nx < .
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Limiting Process and Speckle scaling (plane wave)

In diffusive regime, Optical Length is L = 77%

Let 8> 1 with u?(0,2) = ug(ePz). (very wide incident profile)

At (z,r) fixed, random field
v o' (0) = u’(z, 5 + o)
converges to mean-zero complex Gaussian field ¢(x) characterized by
correlation function
E{p(2)6* (W)} = |uo(r)Pe=Ces ¢ = |v2R(0)/53
E{¢(z)é(y)} = O.

1
Correlation length of u?, whence scale of speckle, is (LC) 2 = \/7(71_

Limit z — oo of w? is singular. [Fouque Papanicolaou Samuelides 98].
Validity A <

Ui



WICOM Paris June 12, 2025

Limiting Process and Speckle scaling when =1
Let 8 =1 with «?(0,2) = ug(ex) incident beam.

Then z — ¢?(z) = u?(2,L 4+ nz) converges to mean-zero complex Gaus-
sian field ¢(x) characterized by E{¢(x)¢(y)} = 0 and correlation function

C(,y) = E{o ()" (y)}
2
Clary) = eBWDTW-2) 52027 G031 4 [ 2227012

where ' = V2R(0) (negative definite) and G Green's function of

(O + Q%Vr -'Vy,)G(t,r) =0, G(O,r) = dg(r).

Anomalous Diffusion t = z3 ~ (z?) reflecting beam dispersion.

. 0 L g
Correlation length of «Y and scale of speckle L2 iors
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Speckle Scaling

o Process z — ¢?(z) = u?(2,Z 4 nz) circular Gaussian as 6 — 0
e (z,7) parametrize large-scale anomalous diffusion envelope

e x parametrizes scale of correlation length
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Intensity in diffusive regime

Let 8 = 1. Define I9(z,r,2) = |¢?(z,r, z)|2.
o Distribution of energy. R.v. I? converges to I in distribution with I
exponentially distributed with EI = I>(z,r) and
1
O3l + 5, Vr TV =0,  I>(0,r) =|uo(r)[*
e Scintillation index in diffusive regime is (asymptotically) unity
E[1°(z, 7, 2)?] — E[I(z,7, x)]?
E[19(z,r,x)]?
e Intensity correlation. For field I(z) = |¢(x)|2, we have
EI(z)I(y) — EI(z)EI(y) = E¢(z)¢* () Ed(y)¢*(z) = [C(z,y)|?
e Self-averaging. For D centered cube of length 1 > a: > en:

> 1

Sz, r,x) =

1
ﬁfp 17(z,r +r',z)dr’ = EI(z,7) = Ix(z,7).
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Convergences

e Finite dimensional distributions. Let X = (x1,...,zy) and

(DG(Z)T)X) — (¢9(2,T,$1), T ,¢0(Z,’I°, ajN)) — (’UJQ(Z,E_BT ‘|‘77$1)a e )

We prove that random vector d? = b with @ circularly symmetric Gaus-
sian random vector with elements {gbj}é-\le s.t.

Elp;jd] =0, E[p;jo;] =C(zj, ;).

e Stochastic continuity & tightness. We prove for some ag > 0

sup E|¢?(s,m,z+ h) — ¢?(s, 7, 2) 2" < C(z, ag)|h|?*", h € B(0,1) C R%
s€[0,z]

e This shows tightness of Py generated by = — ¢?(z) on (H&lder) contin-
uous functions and convergence to P the law of z — ¢(x).
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Derivation 1

e Main difficulty is proving convergence for IS u¢(-).

e Statistical moments of paraxial model ue(-) satisfy these equations
approximately (Duhamel expansion). Extends results from IS to paraxial.
e Statistical moments of IS model satisfy closed form equations.

e Focus on IS model u¢(-). Moments and closed form equations are:

Npq(z X,Y) = E[ H u®(z, ;) H u®*(z, yl)]

=1 =1

: p q 2

_ _ k2
Ozbpg = Lpalipgr  Lpiq 2k08< Zl Z > 47722’{19»‘1’

]: :
P q

p+q

Upg= > > R(zj—y)— >  Rj—zp)—> Ry —yy) — 5 ——R(0).

j=11=1 1<j<5'<p 1<i<l'<q
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Derivation 11

(X,Y) with dual variables v. Then phase-compensated moments

— 22 tewy
Yp o(z,0) = e 2Fos " TS (z,v) solves

(0z = Ly d¥pg =0, Lpg= Z L; with
J

(v, k)P A (v k)
P

C; ~ 1
Lop(z,v) = 77—92 /R R(k)e?or (z,v — Ajk)dk.

Define solution operator vy .(2) = Uy 45 ,(0).
Theorem. U; , = N; .+ E5 , where Ny , corresponds to the (p,q) moment

of a circular complex Gaussian field and where

1
1Ep 4ll < c(p, g, 2)es3,

for the choice n=1 =~ Inine~1 and ¢(p, ¢, z) bounded on compact domains.
o ||-|| is TV norm on M pg(RP4Te9) or corresponding operator norm.
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Derivation III

Advantage of the Banach space M g(RP414%) s that error term E§ , trans-
lates into a controlled error in the uniform sense in the physical variables.

T hus,

1
/'L;:),q(za X) Y) — F(Mi,l(z7 I, y1)7 e 7#?_,1(2:7 Lp, yq)) + O||||oo(63c(p’ q, Z))

where F is continuous functional describing (p,q) moments of mean zero
complex circular Gaussian variable in terms of its second moments.

(To be modified in kinetic regime where first moments do not vanish).

This (plus tightness of random vector) characterizes limit

(qﬁg(z,r,xl), . ) — Cbs(Z,?“,X) = .

& circularly Gaussian r.v. Fully characterized by its moments (Carleman
criterion) and hence unique.
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Derivation 1V

1

Mgsy,q(za X, Y) — F(Mi,l(za L1, y1)7 t 7:“%,1('27 Lp, yq)) + O||,||OO(83C(]?, q, Z))
shows that moments characterized by (limit as € —+ 0) second moments
p1,1(z,z,y) given by

: 2
wn _ e 2 R0 (Rew_ ) ¢
QkOa(Ax Ay)pil+ 102 (R(fC y) R(O))Ml,l-

Direct analysis gives limit e — 0 for C(z,y) = E{¢(x)o*(y)}:

Ozpi 1 =

k2 . 3k 3kq
Cz,y) = ex2?WITWm DT W07 G(23,7) « [22 W70 Tjug 2 ()]

e Tightness of field x — ¢°(z,r,xz) obtained by proving

s€[0,z]

also using closed form equations for moments. U]
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Related work
R i g2
In [B. Komorowski Ryzhik ARMA 11], ¢ = ﬁs(z,g)ea’fozg in paraxial
regime analyzed by diagrammatic expansion. Shows that r.v. ¢ — E¢
complex Gaussian r.v. Also analyzes cases where v is long range.

In [Gu Komorowski CPDE 21], result improved in [to-Schrodinger regime.

- i ,e2
Shows that (z,¢) — B(z,¢) = @(z, £)eh0°°  converges in distribution on
continuous functions to limit ¢ such that ¢ — E¢ complex Gaussian field.
Uses martingale techniques.

In [Garnier Sgina ARMA 16 & MMS 23], the fourth moment of IS model
IS analyzed in detail in the kinetic regime. Analysis shows that fourth
moment is consistent with Gaussian conjecture. Show that scintillation
index asymptotically 1 for large distances of propagation: El = EIZ.

1
. . . . —s ’)7 . "
[Carminati Schotland 21] Scaling of speckle spot in (LC) 2 = (o dif:

ferent from spot in diffusive regime through slab L, where fAL—l.
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Wave propagation in random media
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Wave-beam propagating in turbulent atmosphere

Receiver reading as turbulence strength (or z) increases.
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Splitting / phase screen Algorithms

e Phase screen algorithms routinely used to solve paraxial models [Schmidt
2010] [BPM Matlab 2021] even when smallest scale in problem 6 < Az
in practice. NoO convergence guarantee.

e Splitting algorithm and full spatial discretization with at least first-
order convergence guaranteed as Az — 0 for 6 € (0, 1] and second-order
convergence for statistical moments.

B. Nair 2025. Splitting algorithms for paraxial and Ito-Schrodinger mod-
els of wave propagation in random media. arXiv:2503.00633
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Paraxial & IS models

Paraxial model

1
ou? = ik Agu? + mg—u(f, x)ue, u?(0,2) = ug(x).

VO \O

[to-Schrodinger SPDE model (essentially limit 8 — 0)

k3 R(0)

du = ik1Dgudz — udz + ikoudB, u(0,x) = ug(x).

e Random potential: stationary mean zero Gaussian

Elv(z,2)v(Z,2")] = C(z—72,z—2") Short Range

E[B(z,z)B(Z,2")] = min(z,2)R(x —z'), R(ZC):/RC(S,ZC)CZS
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Splitting Algorithm

For ~ € [0, 1] with ~ :% centered (Strang) splitting:
7 (2) := Az ) §(z— (n+7)Az).

n>0

O, ufP = ?:Tfy(Z)K,]_(Z)Ag;UQA + irko ()0 (2, 2)u?D, WP (0,2) = up(z).

Splitting into succession of simple steps (Similar for SPDE)

TN VY, (2)uf2 (zn, ), zn < z < zn +7Az,
u = (z,x) =
VO 1 AL(2) 0 Gz (2ng1)) 0 VE (o + yAZ) U2 (2, 1),

z2

VEG2) (VI @) = exp ([ ina(s) (s,2)ds ) (o)

G(z): GyY(x)= /Rd G(z — o', 2)y(a")da/, G(z,z) = ” 1 )dezfz.

Locality in Fourier variables: G(t) = ]—"_1@_“|5|2]-"; xs(t) = [Lr1(2)dz.
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Convergence of Splitting Scheme
O,ul> = ify(z)ml(z)AxueA + iro ()0 (2, 2)u??, WP (0,2) = up(x).

Regime of interest: 0 < Az. In practice, 0 = A — 10 3m for L = 103m.

KCOI’I’

Splitting schemes typically do not converge (to right solution) when Az
not smallest scale. Standard commutator techniques eM{(A+B) ~ hAhB

with [RA, hB] small do not apply directly for A = A, and B = \/igu(g,a:).

Here: as 8 — 0O, paraxial converges to SPDE model.

Splitting scheme converges for both paraxial and SPDE limit.
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Pathwise convergence

1
Theorem. [Path-wise estimates] ||ull|x := supg<s<z(E||u(s, ')||%2(X))§

1. Let X=R% and v € {u,u?}. Then ||v—-v2|x < CAz.

2. Let X =R? and v € {u,u?,u?, u?P}.
Then for N > 1, ||v — vel|x < Cn[(AK)2 4+ KM,

3. Let X=T¢ and v € {u,u?®,uf w92}
Then for N > 1, [fve — vylx < CyL™H.

4. Let X = TC[{ and v € {u,u®,u? uA}.
Then for N > 1, [[vy — vsllx < Cn(Az)N.
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Convergence of moments

Theorem. [Moment estimates] D = [0, Z] x XP x X4

1. Let v e {u,u’} and X=R% Then |upq[v] — ppq[v2 ]l o py < C(AZ)F
2. Let v e {u,u?,u?, w2} and X = R?.

Then for N > 1, |[pp,qglv]l — pp,glvelll poo(py < CnI(AK)? + K;;N]-

3. Let X=T¢ and v € {u,u?®,uf w92},

Then for N > 1, |lup,qlve] — ppglvilll poo(py < ONLY.

4. Let X=T% and v € {u,u®,uf w2},

Then for N > 1, |lupqlvs] — pp.glvslll poo(py < Cn(Az)N.

Above 8 = 1 when v #= 12 while § = 2 when ~ =

for SPDE and
3 < B < 2 for paraxial with 3 =2 when 6 < Az and 8 =

when Az = 62.

N| NI
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Numerical simulations

pathwise error second moment error fourth moment error

-2 -5 -4.5
-2.5 -56.5 -5
-3 -6 -56.5

log(Error)
&

(6]
log(Error)
)

(6]
log(Error)
&

—~PWE 0=0.125 —~PWE ¢=0.125 / ——PWE 0=0.125
- - slope=0.98094 - - slope=1.0433 - - slope=1.0348
-4 PWE ¢=0.25 - =77 PWE +=0.25 -6.5+ PWE ¢=0.25
- - slope=0.95061 - - slope=1.0172 - - slope=1.0096
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5 pathwise error 8 second moment error 6 fourth moment error
25 -9 -7
-10
5 5 5
i) &-11 4
8 2 >
=-35 = ~m=1 = 9 ~m=1
~log(Erron) 12 - - slope=2.0862 - - slope=1.9296
- - slope=0.94536 m=3 m=3
-4 13 - - slope=2.0185 -10- - - slope=1.947
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slope=2.0025 slope=1.9814
-4.5 : ‘ -14 : ‘ -1
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Pathwise and moment errors for v =1 and v = % (108 realizations).
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Long distance simulations

-100 -50 0 50 100

(14 1)d. Speckle spot much smaller than (algebraic) correlations in z
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Long distance simulations

-100 -50 0 50 100
X

(14 1)d. Speckle spot much smaller than (algebraic) correlations in z
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Summary

Theorem. As 6 — 0, and at fixed z > 0 and fixed r € R?, paraxial = — ¢
and IS = — ¢° converge in law to a complex circular Gaussian field.

e Field characterized by C(z,y) = E{¢(x)o*(y)} with
k2
Cley) = e WD TE=D= 227 G2, 1) x [0 T g 2(r))

1
(O + ivr -'V,)G(t,r) =0, G(O0,r)=dg(r).
Anomalous Diffusion t = z3 ~ (z2) reflecting beam dispersion.

e B. Nair 2024. Complex Gaussianity of long-distance random wave
processes. Arxiv arXiv:2402.17107

e B. Nair 2024. Long distance propagation of wave beams in paraxial
regime. Arxiv arXiv:2409.09514
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Summary

Theorem. As 6 — 0, and at fixed z > 0 and fixed r € R?, paraxial = — ¢
and IS = — ¢° converge in law to a complex circular Gaussian field.

e Field characterized by C(z,y) = E{¢(x)o*(y)} with
k2
Cley) = e WD TE=D= 227 G2, 1) x [0 T g 2(r))

1
(O + ivr -'V,)G(t,r) =0, G(O0,r)=dg(r).
Anomalous Diffusion t = z3 ~ (z2) reflecting beam dispersion.
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Thank youl!



