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Goal: To Determine the Topology and Metric of
Space-Time

How can we determine the topology and metric of complicated
structures in space-time with a radar-like device?

Figures: Anderson institute and Greenleaf-Kurylev-Lassas-U.



Non-linearity Helps

We will consider inverse problems for non-linear wave equations, e.g.

Deu(t,y) — c(t,y)?Au(t,y) +a(t,y)u(t,y)? = £(t,y).
We will show that:

-Non-linearity helps to solve

the inverse problem,

-“Scattering” from
the interacting
wave packets
determines the

structure of the spacetime.
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Inverse Problems in Space-Time: Passive
Measurements

Star Clusters in the Small Magellanic Cloud
Hubble Space Telescope = ACS/WFC

E SA 7

Can we determine the structure of space-time when we see light
coming from many point sources varying in time? We can also
observe gravitational waves.



Gravitational Lensing

We consider e.g. light or X-ray observations or measurements of
gravitational waves.




Gravitational Lensing

Double Einstein Ring SDS5J0946+1006 Hubble Space Telescope = ACS/WFC

(

Double Einstein Ring Conical Refraction



Passive Measurements: Gravitational Waves

NSF Announcement, Feb 11, 2015
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Inverse Problem for Passive Measurements

Can we determine the structure of space-time when we observe
wavefronts produced by point sources?
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Can we determine the structure of space-time when we observe
wavefronts produced by point sources?



Lorentzian Geometry

(n 4 1)-dimensional Minkowski space: (M, g)

M =R =R; x R?, metric: g = —dt® + dx°.

Null/lightlike vectors: V € TqM with g(V, V) = 0.

L;tl\/l: future/past null vectors



Lorentzian Geometry

In general:

M = (n + 1)-dimensional manifold, g Lorentzian (—,+,...

Assume: existence of time orientation.
TyM = (R*" Minkowski metric).

Null-geodesics: y(s) = expy(sV), V € T¢4M null.
Future light cone: £ = {exp,(V): V future null}



Lorentzian Manifolds

Let (M, g) be a 1 + 3 dimensional time oriented Lorentzian manifold.
The signature of g is (—, +,+, +).
Example: Minkowski space-time (R*, g,), gm = —dt? + dx? + dy? + dz°.

> Lqil\/l is the set
of future (past) pointing e lke £ £(6,6) < 0
light like vectors at q. 0 light-like if g (6, 6) = 0
» Casual vectors are
the collection of time-like
and light-like vectors.

> A curve
~v is time-like (light-like,
causal) if the tangent
vectors are time-like
(light-like, causal).




Causal Relations

Let 71 be a time-like geodesic, which corresponds to the world-line
of an observer in general relativity. For p,g € M, p < g means p, q
can be joined by future pointing time-like curves, and p < g means
p, g can be joined by future pointing causal curves.

» The chronological future
of pe Mis
I(p) ={geM:p<q}.
» The causal future of p e M
is JT(p) ={q € M:q<p}.
> J(p,q) = J*(p) NI (q),
I(p,q) = I"(p) N1~ (q).




Global Hyperbolicity

A Lorentzian manifold (M, g) is globally hyperbolic if

> there is no closed causal paths in M;

» for any p,ge M
and p < q, the set J(p, q) is compact.

Then hyperbolic equations are well-posed on (M, g)
Also, (M, g) is isometric to the product manifold

R x N with g = —3(t, y)dt* + k(t, y).

Here 8 : R x N — R is smooth, N is a 3 dimensional manifold
and k is a Riemannian metric on N and smooth in t.

We shall use x = (t,y) = (xo, x1, X2, x3) as the local coordinates on
M.



Light Observation Set

Let = p([—1,1]) C M be time-like geodesics containing p~ and p™.
We consider observations in a neighborhood V C M of p.

Let W C I~ (pT)\ J (p) be relatively compact and open set.
The light observation set for g € W is

Pv(q) == {1qe(r) € Vi r 20, £ € LgM}.
pt
Pv(q)




Inverse Problems with Passive Measurements

The earliest light observation set of g € M in V is

Ev(q) = {x € Pv(q) : thereis no y € Py(q) and future pointing
time like path « such that «(0) = y and (1) = x} C V.

In the physics literature the light observation sets are called
light-cone cuts (Engelhardt-Horowitz, arXiv 2016)

Theorem (Kurylev-Lassas-U 2018, arXiv 2014)

Let (M, g) be an open smooth globally hyperbolic Lorentzian manifold of
dimension n > 3 and let p™,p~ € M be the points of a time-like
geodesic i([~1,1]) € M, p* =Ji(s+). Let V C M be a neighborhood of
u([—1,1]) and W C M be a relatively compact set. Assume that we
know

Sv(W).

Then we can determine the topological structure, the differential
structure, and the conformal structure of W, up to diffeomorphism.



Boundary Light Observation Set

M= {(t,x): |x| <1} c R*+2,

Theorem

oM

Set of sources S C M°.
Observations in U C OM.
Data: .7 = {LINU: q € S}

The collection ¥ determines the topological, differentiable, and
conformal structure [g|s] = {fg|s: f > 0} of S.



Reflection at the Boundary

~ null-geodesic until v(s) € IM.

p(V) = reflection of V across M. (Snell’s law.)

— continuation of ~ as broken null-geodesic



Null-convexity

Simplest case:

All null-geodesics starting in M° hit OM transversally. (1)

Proposition
(1) is equivalent to null-convexity of OM.:

HW, W) =g(Vwr, W) >0, WeToM null.

Stronger notion: strict null-convexity. (//(W, W) >0, W #0.)

Define light cones Ej using broken

T
null-geodesics. v

oM



Main Result

Setup:
» (M, g) Lorentzian, dim > 2, strictly null-convex boundary
> existence of t: M — R proper, timelike
> sources: S C M° with S compact
» observations in U/ C OM open

Assumptions:
1. leﬂu;«éﬁggﬂuforql;«équ;
2. points in S and U are not (null-)conjugate

Theorem (Hintz-U, 2019)

The smooth manifold U and the unlabelled collection

S ={LyNnU: q e S} C 2 uniquely determine (S, [g|s])
(topologically, differentiably, and conformally).



Example for (M, g)

(X, h) compact Riemannian manifold with boundary.

M=R;x X, g=—dt®?+h.

(Strict) null-convexity of dM <= (strict) convexity of X



‘Counterexamples’

Necessity of assumption 1. (L5 NU # L} NU for g1 # g2 € S)

S1 and S; U S; are indistinguishable from U.



Inverse Problems for Linear Hyperbolic Equations

» Rakesh-Symes 1987: Inverse problem for 92 — A + g.

» Belishev-Kurylev 1992 and Tataru 1995: Reconstruction of a
Riemannian manifold with time-independent metric.

» Unique continuation needed for Belishev-Kurylev-Tataru
results fail for time-depending wave speed.




Active Measurements

Wave equation: Let g = [gj(y)]7x—; and v = uf(y, t) be the
solution of

(02u—Dg)u=0 on N xRy,
ulonxr, = f,
U’t:O =0, Ut’t:O =0.

Here N is a compact Riemannian manifold with boundary, v is the
unit normal of N,

P P
Agu = Z 725 (e M2 gl 7,74
Jj,k=1

where |g| = det(gj;) and [g;] = [g/<] 7. Let
Nf = 8,,uf]aNxR+.

We are given boundary data (ON, A).



Active Measurements
(02u—Ag)u=0 on N xRy,

.
ulonxr, = f, A =0, u" |onxr,

U|t:0 =0, utlt:O =0.

Inverse Problem: Can we recover g from A up to an isometry,
which is an identity at boundary?

Theorem (Belishev-Kurylev 1992, Tataru 1995):  This is true.

> need g to be independent of t;
> Tataru's result is only valid for metrics that depend analytically
on t.

» The Belishev-Kurylev-Tataru result has been extended by Eskin
(2017) to metrics that are real-analytic in the time variable.



Geometrical Optics

Let g € CS°(R"), suppq C {x € R" : [x| < R}.
Letwe S" 1= {xeR":|x| =1}

(02 —A)+qu= 0onR2 xR,
CcP
u= (t—x-w), t<-—R

G(e=x-whe) = [ o pe GER)



Progressing Waves

J(t — x - w) solves
06(t —x-w)=0

where 0 = 02 — A is the D'Alembertian.
(O4q)(t —x-w) =qd(t — x - w)
Next try

ur(t,x,w) =9(t — x - w) + ar(x,w)H(t — x - w)

1 t>x-w
0 t<x-w

H(t—x-w)—{

OH(t—x-w)=0



Progressing Waves

(O+q)u1 =(g(x)+2Var -w)i(t — x - w)

+ (g(x)a1 — Aar)H(t — x - w)

To eliminate main singularity, we choose

Val W = —q(2X)
a(x,w) = —% /_xw q(x + (s — x - w)w)ds



Progressing Waves

If x-w>R,

a1(x,w) = X-ray transform of — q/2
Next try If(x,w) = / f(x +sw)ds, fe (R

up =0(t — x - w) + ar(x,w)H(t — x - w) + a2(x, w)(t — x - w)+

k

>0

where s_lf_ = {g s 0 and ap € C®°(R" x §"1)
s <

1
Vay w= —E(q(x)al — Aa;)



Interaction of Nonlinear Waves

Earth

R3




Inverse Problem for a Non-linear Wave Equation
Consider the non-linear wave equation
Ogu(x) + a(x) u(x)? = f(x) on M° = (—o00, T) x N,
supp (u) C Jg (supp (f)),
where supp(f) C V, V. C M is open,

4

O == 3 (~deg(u) 22 ((~dex(g (o) 2670 50l ).

p,q=1

det(g) = det((gpq(x))5 4=1). f € CS(V) is a controllable source,
and a(x) is a non-vanishing C*°-smooth function.

In a neighborhood W C CZ(V) of the zero-function, define the
measurement operator by

Ly : fuly, fecCS(V).



Theorem (Kurylev-Lassas-U, 2018)

Let (M, g) be a globally hyperbolic Lorentzian manifold of
dimension (1 +3). Let u be a time-like path containing p~ and p™,
V' C M be a neighborhood of i, and a: M — R be a non-vanishing
function. Then (V,g|v) and the measurement operator Ly
determines the set T (p~) NI~ (pT)C M and the conformal class of
the metric g, up to a change of coordinates, in IT(p~) N1~ (p™).




Idea of the Proof in the Case of Quadratic
Nonlinearity: Interaction of Singularities

We construct the earliest light observation set by producing
artificial point sources in I(p_, p+). The key is the singularities
generated from nonlinear interaction of linear waves.

» We construct sources
f so that the solution
u has new singularities.
» We characterize the
type of the singularities.
» We determine the order
of the singularities and
find the principal symbols.




Non-linear Geometrical Optics

Let u=ewy + e?wo + 3wz + e*wy + E. satisfy
Ogu+au?=f, in M°=(—00, T) x N,
Ul(—c0,0)xn =0

with f = ef;. When Q = Dgfl, we have

wr = Qf,

wa = —Q(awiw),

w3 = 2Q(aw; Q(awywy)),

wy = —Q(aQ(awrwy)Q(aws wr))

—4Q(aw; Q(awy Q(awy wy))),
IE-| < C&®.



Non-linear Geometrical Optics

The product has, in a suitable microlocal sense, a principal symbol.

There is a lot of technology availale for the interaction analysis of
conormal waves: intersecting pairs of conormal distributions
(Melrose-U, 1979, Guillemin-U, 1981, Greenleaf-U, 1991).

)/




Interaction of Waves in Minkowski Space R*

Let x/, j = 1,2,3,4 be coordinates such that {x/ = 0} are
light-like. We consider waves

ui(x) = v-()T, ()T =1s|"H(s), veER,j=1,234
X = t—x-w;, |wl=1
Waves u; are conormal distributions, u; € I™T1(K;), where
Ki = {¥=0}, j=1234.
The interaction of the waves u;(x) produce new sources on
Kz = Kink,
Koz = KiN KN Kz =line,
Kioza = KiNKyNKzN Ky ={q} = one point.




Interaction of Two Waves (Second order linearization)

If we consider sources f(x) = e1f(1)(x) + e2f(2)(x), €= (e1,¢€2),
and the corresponding solution uz, we have

0 0
Wa(x) = Tglajzue{x)’g:o

= Qauu) - uw2),
where Q = D;l and
ugy = Qfj).-

Recall that K12 = K1 N Ko = {x! = x2 = 0}. Since the normal
bundle N*Ki5 contain only light-like directions N*K; U N*Ko>,

singsupp(Wa) C K1 U K>.

Thus no new interesting singularities are produced by the
interaction of two waves (Greenleaf-U, 1991).



Three plane waves interact and produce a conic wave. (Bony, 1996,
Melrose-Ritter, 1987, Rauch-Reed, 1982)
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Interaction Of Three Waves (Third order linearization)

If we consider sources fz(x) = Zle gjf(jy(x), €= (e1,€2,¢€3), and
the corresponding solution vz, we have

Ws = a61662863U§|§0

= 4Q(augy) (auz)U3))
+4Q(au 2) (a HE) ))
+4Q(auzy Qauq) uw))),

where Q = D;l. The interaction of the three waves happens on
the line K123 = K1 N K> N K3.

The normal bundle N*Ki»3 contains light-like directions that are
not in N*Ky U N*K> U N*K3 and hence new singularities are
produced.



Interaction of Waves

The non-linearity helps in solving the inverse problem.

Avrtificial sources can be created by interaction of waves using the
non-linearity of the wave equation.

SHoOC K

WAVE

9
lVA’I’Q‘
SUBSoNIC MACH | SUPERSONIC

The interaction of 3 waves creates a point source in space that
seems to move at a higher speed than light, that is, it appears like

a tachyonic point source, and produces a new "shock wave" type
singularity.



Interaction of Four Waves

The 3-interaction produces conic waves (only one is shown below).

The 4-interaction produces
a spherical wave from the point ¢
that determines the light

observation set Py(q).

1/
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Interaction Of Four Waves (Fourth order linearization)

If we consider sources f=(x) = Z}‘:l gjf(jy(x), €= (e1,€2,¢€3,¢€4),
and the corresponding solution uz, we have following. Consider

W4 - 6518528538€4U€’€:0-

Since Kiz3a = {q} we have N*Kipza = TgM. Hence new
singularities are produced and

singsupp(W,) C (Ui, K)) UZ U LIM,

where X is the union of conic waves produced by sources on Kios,
K134, K124, and Kozs4. Moreover, EjM is the union of future going
light-like geodesics starting from the point g.



Q>
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Active and Passive Measurements

(M, g) (2 + 1)-dimensional, Ogyu = u® + f.

Idea (Kurylev-Lassas-U 2018, arXiv 2014): Using nonlinearity to
create point sources in /(p_, p+).

3
f= Ze;f;, uj = D;lfi.
i=1
Take f; = conormal distribution, e.g.

fl(tvx) - (t - X1)1+1X(tvx)7 X € C?O(RlJrz)'

Then
u~ Z €ju; + 6616263D;1(U1U2U3).



Generating Point Sources

non-linear interaction of conormal waves u; = D;lf,-: D;l(U1U2U3)

q= ﬂ sing supp Uuj, E;}' = sing supp D;l(ul upu3)
i=1

= singularities of 02, u give light observation sets £



Active and Passive Measurements

(M, g) (2 + 1)-dimensional, Ogu = a(x)u® + f, a # 0.

Idea (Kurylev-Lassas-U 2018, arXiv 2014): Using nonlinearity to
create point sources in /(p_, p+).

3
f= Ze;f;, up = D;lfi.
i=1
Take f; = conormal distribution, e.g.

fl(tvx) - (t - X1)1+1X(tvx)7 X € C?O(RlJrz)'

Then
u~ Z €ju; + 6616263D;1(U1U2U3).



Generating Point Sources

non-linear interaction of conormal waves u; = D;lf,-: D;l(U1U2U3)

q= ﬂ sing supp Uuj, E;}' = sing supp D;l(ul upu3)
i=1

= singularities of 02, u give light observation sets £



Active Measurements for Boundary Value
Problems

Theorem (Hintz-U-Zhai, 2021)
Model (in dimM =1+ 2)

Ogu = a(x)u®, a# 0, uly, = uo € CX(Up).

Measure L: ug — O, uly,. Recover a and g from L.

~
T Propagation of singularities:
_____ -|Un (strict) null-convexity assumption
simplifies structure of
Up El null-geodesic flow. (Taylor '75,
o '76, Melrose-Sjostrand '78, '82.)
~

(Special case: Uy = Up.)



Einstein’s Equations

The Einstein equation for the (—, +, +, +)-type Lorentzian metric
gjk of the space time is

Einik(g) = Ti,
where
. ) 1 )
Einj(g) = Ricjk(g) — E(gpq Ricpq(g))gik-

In vacuum, T = 0. In wave map coordinates, the Einstein equation
yields a quasilinear hyperbolic equation and a conservation law,

2
81(x) 50— gi(x) + Bi(8(x). 98()) = Ti(x)

Vp(gpj Tjk) =0




Einstein’s Equations Coupled with Matter Fields

Ein(g) =T, T=T(¢,g)+ Fi, on(—o0, T)x N,
Ogpe — m*de = Fs, £=1,2,...,L,
g|t<0 =g, ¢|t<0 = ¢.

Here, g and gg are C*°-smooth and satisfy the equations above with
zero sources and

Ti(g. o Z 0j e Oxpp — *gjkgpqapcf)e Oqr — m 202 gjk.-
/=1

To obtain a physically meaningful model, the stress-energy tensor
T needs to satisfy the conservation law

Vo(g?Ti) =0, k=1,2,34.



Let V3 C M be a neighborhood of the geodesic 1 and p~, pt € p.

Theorem (Kurylev-Lassas-Oksanen-U, 2022; U-Wang, 2020)
Let

D = {(Vg glv,,dlv,, Flv,): g and ¢ satisfy Einstein equations
with a source F = (F1, F2), supp (F) C Vg, and
Vi(T*(g, ¢) + F{) = 0}.

The data set D determines uniquely the metric on the double cone
(JH(p7) NI~ (p"),B).




Inverse Boundary Value Problem

Assume M =R x N is a Lorentzian manifold of dimension (1 + 3)

with time-like boundary.

Ogu(x) + a(x)u(x)* =0, on M,
u(x) = f(x), on IM,
u(t,y) =0, t <0,

Inverse Problem: determine the metric g and the coefficient a from
the Dirichlet-to-Neumann map.



The Main Result

Theorem (Hintz-U-Zhai, 2022)

Consider the semilinear wave equations
Opou(x)+alu(x)* =0, j=12,

on Lorentzian manifold MY with the same boundary R x N. If
the Dirichlet-to-Neumann maps AY) acting on C>([0, T] x ON) are
equal, N = A2 then there exist a diffeomorphism

Vi Upy = Up) with V0, Tyxon = Id and a smooth function

B e C(MW), Bl 1yxan = 0B, T)xon = 0, so that, in Uy,

W@ = e g yra® — By e f .



Ultrasound Imaging

Nonlinear interaction: waves at frequency fc generate waves at
frequency 2f¢:

Linear Interactions Nonlinear Interactions

Energy

Energy

T T —
L fe %

——Original pulse - - - -Pulse after propagation



Inverse Boundary Value Problem

The acoustic waves are modeled by the Westervelt-type equation

1 .
C2(X)at?p(tvx) - B(X)agpz(tvx) = Ap(t7X)7 n (07 T) X Q7
p(t,x)=1f, on(0,T)x0Q,
_9p _ _
'D—@t_o’ on {t =0},

> c: wavespeed

» 3: nonlinear parameter

Inverse problem: recover 8 from the Dirichlet-to-Neumann map A.



Second Order Linearization

Second order linearization and the resulted integral identity:

fi f5 fod Sd't
/ o0 a61362 Mewfy + e2f2) 0

€1=€2=0
—2/ / B(x)0¢(u1u2)Orupd xd t.
0o Ja
where uj, j = 1,2 are solutions to the linear wave equation
Lo
gﬁt ui(t,x) — Auj(t,x) =0

with uj|(0, Tyxa0 = fj, and ug is the solution to the backward wave
equation W|th uol(o,Tyx00 = fo



Reduction to a Weighted Ray Transform

Construct Gaussian beam solutions ug, u1, uy traveling along the
same null-geodesic ¥(t) = (t,y(t)), where v(t), t € (t_, ty) is the
geodesic in (€, g) joining two boundary points v(t_),v(t;) € 9%.

Insert into the integral identity, one can extract the Jacobi-weighted
ray transform of f = 8c3/2 = invert this weighted ray transform
(Paternain-Salo-U-Zhou, 2019; Feizmohammadi-Oksanen, 2020)



A frequency-domain model (with constant wavespeed ¢ = 1): two
plane waves e’*** at frequency w = | k| generate nonlinear wave V
at frequency 2w:

AV + (2w)?V = pe?ikx,

which can be factorized into
(0x — A (0x — Ny,) V = Be2ikx
where A} is the forward DtN map. In 2D:
A3V =2iwV — iaﬁ V +0(1/w?).
4iw

Numerical results for recovering /3 in the following equation from
Vs, 0, Vo

1 .
OV = 2iwV + —2V = Bk
4iw Y



Figure: L/A =10 (top row) and L/A =100 (bottom row) where L is the
size of the image and )\ is the wavelength.



Figure: L/A =10 (top row) and L/A =100 (bottom row) where L is the
size of the image and ) is the wavelength.



Other Developments

. Einstein's equations (U-Wang, 2020)
. Non-linear elasticity (de Hoop-U-Wang, 2020; U-Zhai, 2021)
. Yang-Mills (Chen-Lassas-Oksanen-Paternain, 2021, 2022)

. Inverse Scattering (Sa Barreto-U-Wang, 2022; Hintz-Sa
Barreto-U-Zhang, 2024)

. Semilinear equations (Kurylev-Lassas-U, 2018; Wang-Zhou,
2019; Hintz-U-Zhai, 2020; Stefanov-Sa Barreto, 2021, 2022)

. Non-linear Acoustics (Eptaminitakis-Stefanov, 2022)

. Non-linear Dirac (i, 2024)



Fractional Laplacian

Consider the fractional Laplacian
(-=A)°, 0<s<1,
defined via the Fourier transform by
(—A)u=FH|gPu(©)}.

This operator is nonlocal: it does not preserve supports, and
computing (—A)°u(x) involves values of u far away from x.



Fractional Laplacian

Different models for diffusion:

Oru—Au=0 normal diffusion/BM
Oru+ (—A)°u =0 superdiffusion/Lévy flight
0fu—Au=0  subdiffusion/CTRW

The fractional Laplacian is related to

» anomalous diffusion involving long range interactions
(turbulent media, population dynamics)

> Lévy processes in probability theory
» financial modelling with jump processes

Many results for time-fractional inverse problems
[Kaltenbacher-Rundell, 2023].



Inverse Problem for the Fractional Laplacian

Let Q C R" bounded, g € L>°(Q2). Since (—A)? is nonlocal, the
Dirichlet problem becomes

{ (A +q)u=0 in Q,
u=f in Q.

where Q. = R"\ Q is the exterior domain.
Given f € H*(.), look for a solution u € H*(R"). DN map

Ngs: H(Qe) = H*(Qe), Ngsf =(—A)ulq,.

Inverse problem: given A, s, determine q.



First Result

Theorem(Ghosh—Salo-U, 2020)
Let Q C R" be a bounded open set, let 0 < s < 1, and let
g1, q2 € L>(Q). If W, W' C Q. are open sets, and if

/\ql,sf|W/ = /\qz,sf‘W’a fe CSO(W)a

then g1 = g2 in Q.
Remark: Only one f is enough (Ghosh-Riiland-Salo-U, 2018)
Main features:

» local data result for arbitrary W, W' C Q.
» the same method works for all n > 2

» new mechanism for solving (nonlocal) inverse problems



Identity

Ngi,s = Ngy,s implies

/(fh — q)uiur =0
Q

where u; satisfies
((=A)° +qgi)uyi=0 onQ

Instead of CGO solutions we will use Runge approximation for
non-local operators.



Runge approximation

Classical Runge property (for du = 0): analytic functions in simply
connected U C C can be approximated by complex polynomials.

General Runge property (for elliptic PDE): any solution in U, where
U C Q C R” can be approximated using solutions in Q.

Reduces by duality to the unique continuation principle
(Lax—Malgrange, 1956) cf. approximate controllability.



Runge approximation

Produce solutions with u|y, ~ 0 and u|y, > 1 (region of interest),
but with very little control outside Uy U Uy. Useful in the Calderén
problem for

>

>
>
[

boundary determination (Kohn—Vogelius 1984)
piecewise analytic conductivities (Kohn-Vogelius 1985)
local data if v is known near Q2 (Ammari-U 2004)

detecting shapes of obstacles ( v known near 0Q2 ), e.g.
singular solutions (Isakov 1988); probe method (lkehata 1998);
oscillating-decaying solutions (Nakamura-U-Wang 2005);
monotonicity tests (Harrach 2008)



Main tools 1: Uniqueness

Theorem
If ue H="(R") for some r € R, and if ulyy = (=A)*ulw = 0 for
some open set W C R", then u = 0.
Proof (sketch). If u is nice enough, then
(=A)u~ I|my1 20,w(-,y)

y%

where w(x, y) is the Caffarelli-Silvestre extension of u:

{ divy, (y1"3Vyeyw) =0 inR" x {y >0},
w|y—o = u.

Thus (—A)®u is obtained from a local equation, which is
degenerate elliptic with A weight y'=2%. Carleman estimates
[Riiland 2015] and u|w = (—A)°ulw = 0 imply uniqueness.



Caffarelli-Silvestre Extension

{Aw:O in R" x {y > 0},
wly—o = u.

WX, y) = / € VIElG(e) de

Au(x) = = lim By w(-,y) = (~8)3(u)(x)



Main tools 2: Approximation

Theorem(Ghosh—Salo-U, 2020)
Any f € L?(Q) can be approximated in L?(Q) by solutions ulq,
where

(A +qu=0in Q, supp(u) C QU W. (%)
If everything is C>°, any f € CX(Q) can be approximated in CX(Q)

by functions d(x) *ulq with u as in (x).
Proof. Apply this to

/Q(Ch —@)uip =0, (=AY +q)u=0(=1,2)



Anisotropic Case

v(x) = (79 (x)), (+¥) positive definite on Q, (v7) = Id on Qe.

{ ((Zf’,jzl = (’y"fa%))er Qu=0 inQ,

u=-~r in Q¢

where Q. = R"\ Q is the exterior domain.
/\q757’yf = £S(u)|ﬂe?

Theorem(Ghosh-Lin—Xiao, 2017) Can determine uniquely g from

/\q757’y
Nonlocality helps!



Fractional Laplacian for Variable Coefficients

. s
Definition of £L° := (Z;’J:l 82,- ('y’f 8‘1)) via heat semi-group

{e7*}x00

n s L 1 o U(Xv t) B U(X)
VX S R y E U(X) = r(s)/o T dt,

where U uniquely solves

U—-LU=0 inR"x(0,00)
Ut=o=u inR".



Fractional Calderén Anisotropic Problem (second
instance)

Let (M, g) be a smooth closed connected Riemannian manifold of
dimension n > 2. Let —A, be the positive Laplace—Beltrami
operator on M. It is a self-adjoint operator on L?(M) with the
domain D(—A,) = H*(M).

Let av € (0,1). By the functional calculus we define the fractional
Laplacian (—A,;)® as an unbounded self-adjoint operator on L?(M)
given by

[o.¢]
(D) u=>_ Ameu,
k=0

equipped with the domain D((—Az)%) = H?**(M). Here

0= X0 <A1 < A2 <... are the distinct eigenvalues of —A, and
7k : L2(M) — Ker(—Agz — i) is the orthogonal projection onto
the eigenspace of \j.



The Inverse Problem

Let © C M be open nonempty and let f € C§°(O) be such that
(f,1)12(my = 0. Then the equation

(—Ag)*u=f in M
has a unique solution u = uf € C>(M) with the property that
(uf, 1)12(m) = 0, given by

U = (=0g) " F =D N Omif
k=1

We define the local source-to—solution map Ly 4 0 by

Lugo(f) = ulo = ((~2g)"*Flo.

The fractional anisotropic Calderén problem: does the knowledge of
Lm g0, the observation set O, and the metric g|o determine the
manifold (M, g) globally?



Obstruction to uniqueness: if & : My — My isa C™®
diffeomorphism such that ®*g, = g1 on M; and ®|p = Id, then
Lit,go,0 = Ly 1,0

Theorem (Feizmohammadi-Ghosh—Krupchyk-U., 2021, Riilland,
2023)

Let (M1, g1) and (Ma, g») be smooth closed connected Riemannian
manifolds of dimension n > 2, and let O; C M, j = 1,2, be open
nonempty connected sets. Assume that

(0O1,81l0,) = (02, 8]0,) = (0, g).

Assume furthermore that

LM27g27(9(f) = LM17g17O(f)v

for all f € C5°(O) with (f,1),2(0) = 0. Then there exists a
diffeomorphism ¢ : My — M, such that ®*g> = g3 on My, and
d|o = Id.



Remarks

Remark. While the anisotropic Calderén problem is wide open in
dimensions n > 3, here we are able to recover a smooth closed
Riemannian manifold, up to a natural obstruction.

Remark. While there is an additional obstruction in the geometric
version of the anisotropic Calderén problem in dimension n = 2,
coming from the conformal invariance of the Laplacian, this
obstruction is not present in the fractional anisotropic Calderén
problem.



Sketch of the proof

> Step 1. Pass from the equality

L/Vlz,gz,o(f) = L/Vh ,g1,(9(f)7

for all f € C5°(O) with (f,1),2(0) = 0, to the equality for the
heat kernels of Pg = —Ag on O,

e tPa (x,y) = e tPe (x,y), x,yeO, t>0.

» Step 2. Show that the equality
e Pa(x,y)=ePa(x,y), xycO, t>0.

implies that there exists a diffeomorphism ¢ : M; — M5 such
that ®*g» = g1 on My, and ®|p = Id.



Sketch of the proof of Step 1

The key role is played by the following representation of the
operator nga = (—Ag) ™ in terms of the heat semigroup e Py

Py = 1 > —tPg; 1
R OF T

where v; € L2(M;) is such that (v;, iz =0,j=1,2.
Let f € C5°(O). As gilo = g2lo = g and (AFf,1)2(0) = 0, we
get from the equality of the local source—to—solution maps that

LM27g2,O(A?f) = LMl,gl,O(Agf), m = 172, e



Therefore,
(Pg—laA;nf)kg = (Pg_zo‘Ag'fﬂo.
Hence,
oo —tPgy —tPeyAMF dt =0 o
| (7T e T)ATN () g =0, x €0,

forall m=1,2,....
Using that

(e BAT)(x) = 07 (e Tuf)(x), x€O,

we get

[Tor(e s ey <0, xeo
0

fora”m:l,z,....



Next, we would like to integrate by parts m times. In doing so, we
let w; CC O be open nonempty, and pick w, CC O such that

w1 Nwz = 0. We work with £ € C5°(w1), and restrict x € wy. No
contributions coming from the end points when integrating by parts
will occur, thanks to the pointwise upper Gaussian estimate on the
heat kernel,

Cdg.(x,y)z

lePe(x,y)| < Ct2e" ¢, 0<t<l, xyeM,,
together with the estimate
—tP.. _
le™ & vz < e HIVIizmy, t=0,

for some 3 >0, v € L2(M;), (v, 1)i2(m;) = 0.



Thus, integrating by parts m times, we obtain that

P —tP, dt
0 ((e & — e gz)f)(X)m :0, Xsz,
for all m=1,2,.... Making the change of variables s = 1/t, we
get

/ o(s)sds =0, m=0,1,2,...,
0

where ' p ' p
“sTer — e sMe2)f
o(s) = (e sea ) )(X), X € wo.

Standard complex analytic arguments show that
((e7®a — e ™Pa)f)(x) =0, xE€wy, t>0.
By the unique continuation for the heat equation,

e Pa(x,y) =e Pe(x,y), x,ycO, t>0.



Sketch of the proof of Step 2

We shall reduce the problem to an inverse problem for the wave
equation with interior measurements on O.

To that end, let F € C5°((0,00) x O) and consider the following
inhomogeneous initial value problem for the wave equation,

(07 — Dg)uj(t, x) = F(t,x), (t,x) € (0,00) x M;
UJ(O,X) =0, X € Mj,
0¢u;(0,x) =0, x € M;,

j =1,2. The problem has a unique solution
up = uJF € C*([0,00) x M;). We define the local
source—to—solution map on O by

wave

. F
Mj@j@ . F —> Uj ’O



Our goal is to show that the equality for the heat kernels
—tP, _ —tP,
e "a(x,y)=e"2(x,y), x,y€0O, t>0.

implies the equality of the local source-to—solution maps,

Ly g,0(F) = Lidy g, 0(F),

for F € C§°((0,00) x O).

The existence of a desired diffeomorphism will then follow from the
boundary control method of Belishev (1987), Belishev-Kurylev
(1992), which is based on the unique continuation result of Tataru
(1995).

In doing so, we write for j = 1,2,

tsin((t — P,.
qu(t,x):/O sin(( \/%@)F(s,x)ds, (£,x) € [0,00) x M.



Thanks to the transmutation formula of Kannai, 1977,

1 +oo _%sin(\ﬁ1 /ng)
vl S Y
where v; € LZ(MJ-), j = 1,2, which transforms the solution to the

wave equation to the solution of the heat equation, the equality of
the heat kernels implies that

/0 Tt (Si”(‘@%’z) f) (x)dr

_ /Om e”(Wf) (x)dr, x€ O, t >0,

for f € C5°(O). Inverting the Laplace transform, we get

—tP,,
e fv= vidt, t>0,

up (t,x) = u5(t,x), x€O, t>0,

showing the claim.



Further Results

Regularity and stability (Riiland-Salo, 2017)

Reconstruction with single Measurement
(Ghosh—Riiland-Salo-U, 2018)

Local perturbation of the fractional Laplacian
(Ceki¢-Lin—Riiland, 2018; Covi-M6nkkénen—Railo-U, 2020)

Non-local Perturbations (Bhattacharyya—Ghosh-U, 2021)

Fractional magnetic operators (Covi, 2019; Li, 2020;
Lai-Zhou, 2021)

Fractional parabolic operators (Lai-Lin—Riiland, 2020; Li,
2021)

Fractional elasticity (Li, 2021; Covi-de Hoop-Salo, 2022)

Fractional Laplace-Beltrami operator on closed manifolds
(Feizmohammadi-Ghosh-Krupchyk-U, 2021)

Anisotropic fractional conductivity equation (Covi, 2022)



Fractional Dirac operator on closed manifolds (Quan-U, 2022)

Powers of the conductivity equation (Covi-Railo-Zimmerman,
2022).

Fractional connection Laplacian (Chien, 2022)
From nonlocal to local (Covi-Ghosh-Riiland-U, 2023)

From nonlocal to local for parabolic equation (C.Lin-Y.Lin-U,
2023)

Nonlocal porous medium equations (Y.Lin-Zimmerman, 2023)
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