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Outline:

Imaging methodology adapted to the availability of an abundance of data
1. When large and diverse data sets are available, such as satellite or

conventional SAR surveillance data, imaging methodology changes.
For example, data volume is essential for training NNs. But what
exactly do we gain with the data-intensive methodology, with or
without NN? A lot in fact.

2. We do not only image (statistically speaking: estimate) the location
and reflectivity of the object(s) we want. We can and should
estimate/assess the ambient medium (as needed) as well.

3. Main result: In strongly inhomogeneous media we can image with
resolution that is better than that of the same imaging system in a
homogeneous medium (super-resolution). Applications: Imaging
through foliage, dusty environments, atmospheric inhomogeneities.

4. Identify advantages and disadvantages in using NN vs more
conventional optimization methods. NN gain robustness and relative
simplicity but lose some control of accuracy. Overall NN seem to
have an edge, but without much of a theory for now.

5. Concurrent issues: Imaging when multiple random media are
involved. Application: surveillance SAR.
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Imaging schematic
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Imaging schematic and illustration of the effective aperture.1

1
Super-resolution in disordered media using neural networks; https://arxiv.org/pdf/2410.21556
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Continued: The simulation setup in the microwave regime

• Array size a = 30λ and the bandwidth is 1GHz, with a 5GHz
central frequency, C-Band (wavelength λ = 6cm).

• In the simulations, the cross-range resolution in homogeneous media
is λL/a = 8λ, where a is the physical array aperture and L = 240λ is
the range.

• In the scattering medium (use the Foldy-Lax equations2) the
resolution is about 2λ which translates to an effective aperture that
is four times the physical aperture of the array, i.e.,
aeff ≈ 4a = 120λ.

• The range resolution is c0/B where c0 is the background
propagation speed and B is the bandwidth.

• In this numerical simulation (Foldy-Lax), the range resolution in the
scattering medium does not change.

2
P.-D. Letourneau, Y. Wu, G. Papanicolaou, J. Garnier, and E. Darve, A numerical study of super-resolution through fast 3D

wideband algorithm for scattering in highly-heterogeneous media, Wave Motion, 70, 113-134 (2017)
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The results: Super-resolution
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TL: Physical time reversal; TR: The new imaging method;
BL: Homogeneous medium; BR: Kirchhoff migration
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Continued: Super-resolution vs. time reversal

• Top left: physical time reversal focusing on the known grid using
the true Green’s functions.

• Top right: the proposed imaging algorithm, migration image using
the estimated dictionary elements on the reconstructed grid from the
ordered sensing matrix. We can see that we achieve similar
resolution in both cases, which is able to resolve to closely located
sources.

• Bottom left: migration image in a homogeneous medium.

• Bottom right: Homogeneous medium Green’s function migration
applied to random medium data. The resolution is inferior to that
obtained by the estimated sensing matrix.
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The imaging method without NN

The imaging problem comes down to solving a very large linear system3

y = G x , (1)

where y ∈ CN is the recorded array data vector. We consider x as the
image, that is, a vector whose k-th component represents the complex
amplitude of the source at location z⃗k in the image window,
k = 1, . . . ,K, and G is the N× K sensing matrix, that is, the matrix
whose columns are the Green’s functions for wave propagation in the
medium between the array and the image window. Typically K ≫ N.
New Imaging Problem: Given yi = G xi for i = 1, 2, . . . ,M data,
estimate, in addition, the sensing matrix G. Here M ≫ K.
Once G has been estimated imaging with any data vector y is routine
inversion of a linear system for the image vector x, which is
”conventional imaging”.
Essential assumption: The image vector x is sparse.

3
We sssume single frequency in this presentation for simplicity but multiple frequencies (broadband) are used in theory and

simulations
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How to estimate the sensing matrix G

• Step 1. Estimate the columns of columns of G as an unordered set
(dictionary learning) either with an encoder-decoder NN or with

alternating optimization (MOD): Minimize over Ĝ (N× K) and X

(K×M) the error ∥ĜX−Y∥2F where Y is the N×M matrix of data
vectors, the expected sparsity level of each column of X is fixed, and
F denotes the Frobenius norm. This requires a good initialization as
it is non-convex! It is a stable (because of sparsity) form of blind
deconvolution. With NN we do not need an initialization but we
need multiple versions of the output Ĝ followed by a clustering
method to improve accuracy. The NN approach is simpler and more
robust but may be less accurate. It can also be fully replicated by the
DL algorithm, with random initialization and followed by clustering.

• Step 2. Order the columns of the estimated sensing matrix Ĝ. That
is, identify their source point in the image window.
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The Neural Network

Neural network architecture.
We use a two hidden layer network for the encoder. The output of the
encoder E(y) is fed into the linear decoder network with output I(y).
Modulus thresholding activation is used in the intermediate layers and
LeakyReLU activation is used for the other layers. Before activation
functions are applied, the input is standardized using batch normalization.
We train the networks to minimize the loss function
L = ∥I(y) − y∥22 + µ∥ E(y)∥1.
Note the sparsity penalty in the loss function, which is essential.
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Ordering the columns of the estimated sensing matrix Ĝ

It amounts to reconstructing the grid in the image window using
MultiDimensional Scaling (MDS)
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Left: Grid reconstructed with the true Green’s functions using MDS;
Middle: Grid obtained from the estimated Green’s functions using MDS;
Right: Grid obtained from MDS after rotation and scaling assuming the
location of 3 “anchor” points is known, superimposed over true grid,
plotted with red circles.
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Ordering the columns of Ĝ continued

• This is Step 2: We want to find the focal spots in the image window
from the estimated columns of the sensing matrix {ĝi}

K
i=1.

• We use MDS. What is it? In its simplest form it is a least squares
algorithm that finds the location of points {zi}

K
i=1 in the image

window when their pairwise distance ∥zi − zj∥ is given, and this is
up to an overall translation, rotation and scaling. Most important
application to date (20-25 years old): sensor location, but with a
metric that is not Euclidean.

• We use MDS with a proxy metric that is formed using the inner
products of the estimated columns {ĝi}

K
i=1.

• From these inner products, which contain all possible imaging
information, we do a proxy MDS and find the ordering.

• MDS can also be done with NN. But when we have a rectangular
grid in the image window there is no gain. If, however, the image
window has an irregular/unknown gridding then the NN improves
performance by some 10-20 percent (this is a separate work).
Application: SAR with an irregular surveillance pattern that is not
known accurately.
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Proxy MDS

• We can use MDS in a non-metric context where we do not have
Euclidean pairwise distances. Instead, we associate with each column
of the sensing matrix the vertex of a graph, From the inner products
that are close to one (ranked inner products) we form neighborhoods
and link them with edges. The pairwise distance between columns is
then their geodesic graph distance (minimum number of edges
needed to connect two vertices in a simply connected graph).

• This works quite well in the Foldy-Lax array imaging data provided
the pixelization of the image window is calibrated correctly. This is
how ”classical” imaging resolution connects with MDS methodology,
and we need some minimum coherence for the DL estimated
columns.

• Important trade-off: DL needs incoherence but MDS needs some
coherence.
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Multiple random media

• If we have full-diversity data for all the different random media then
pooled DL works well and we end up with a large sensing matrix
(unordered at first) which is the concatenation of the sensing
matrices of each random medium. MDS and clustering works fine in
this context.

• If we do not have full data sets but the random media do not change
much then the concatenation will work for DL. MDS works as well.

• The incremental multiple random media case is important in many
surveillance applications.
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Concluding remarks

• When we have large and diverse data sets we can image with
exceptional resolution and stability

• The methodology is very different from previous ones. We now set
out to estimate ”everything”, even ”noise”

• Going forward: Multiple random media, when the ambient medium
changes (weakly or strongly). Recent results tell us that this can
actually lead to better resolution by some 10-20 percent by
improving the MDS step, when the ambient medium changes slowly.
In preparation: Surveillance SAR simulations, including satellite LEO
SAR.
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