Practical Electrical Impedance Tomography with partial data

Kim Knudsen, Technical University of Denmark

Waves and imaging in complex media

Paris, June 10, 2025

DTU Compute Department of Applied Mathematics and Computer Science

Outline

- 1 The Kuopio Tomography Challenge 2023
- 2 Level set method
- Sparsity regularization

Goal is to share excitement about the challenge in an educational and research perspective.

Computational Uncertainty Quantification for Inverse problems

The Kuopio Tomography Challenge

¹Räsänen et al. 2024. ³ DTU Compute

The Kuopio Tomography Challenge

- Competition organized by UEF and FIPS in 2023¹
- 3D printed inclusions of higher and lower conductivity
- Immersed in EIT tank with 32 electrodes
- Training data available incl. empty tank data
- Seven levels of difficulty with partial data
- Input: Electrode data measuring currents and voltages Output: Image segmented into background/higher/lower conductivity
- Score reconstructions by SSIM on test data

The Complete Electrode Model

Inverse problem: Find σ from the electrode data.

CUQI KTC2023 10/6-2025

¹Somersalo, Cheney, and Isaacson 1992.

Baseline Reconstruction Method - provided by UEF

Linearization

 $\Delta V = J(\sigma_0)\Delta\sigma + \Delta e$

with $J(\sigma_0)$ the Jacobian of the forward model.

5

DTU

²Hauptmann et al. 2017. ³Otsu 1979. DTU Compute

Baseline Reconstruction Method - provided by UEF

Linearization

$$\Delta V = J(\sigma_0)\Delta\sigma + \Delta e$$

with $J(\sigma_0)$ the Jacobian of the forward model.

MAP estimate for posterior in Bayesian approach with Gaussian assumptions

$$\underset{\Delta\sigma}{\operatorname{argmin}} \underbrace{\|\underline{L}_{\Delta e}(J(\sigma_0)\Delta\sigma - \Delta V)\|_2^2}_{\text{Data misfit}} + \underbrace{\|\underline{L}_{\mathrm{pr}}\Delta\sigma\|_2^2}_{\text{Smoothing}};$$

 $L_{\Delta e}$ and $L_{\rm pr}$ are weight matrices from prior and noise covariances.

Segmentation by Otsu's method³ on $\Delta\sigma$.

²Hauptmann et al. 2017. ³Otsu 1979.

⁵ DTU Compute

Example: Linear Reconstruction and Segmentation

DTU

DTU

DTU

DTU

The DTU-CUQI Team

Jakob Tore Kammeyer Nielsen

Martin Sæbye Carøe

Rasmus Kleist Hørlyck Sørensen

Aksel Kaastrup Rasmussen

Amal Alghamdi

Chao Zhang

Jasper Marijn Everink

Jakob Sauer Jørgensen

Kim Knudsen

Team spirit, group work, and coding hackathons

DTU

Spatial Regularization

Here, $L_{\rm spatial}$ is a diagonal weight matrix with entries calculated proportional to

$$(L_{\text{spatial}})_{i,i} = ||x_i||_2^4 \cdot \left(\sum \operatorname{dist}(x_i, E_m)^3\right)^{\frac{1}{3}}, \quad i = 1, \dots, N.$$

Results - Reconstruction with Spatial Regularization

DTU

⁴Otsu 1979. ⁵Chan and Vese 1999.

12 DTU Compute

Segmentation: Otsu's method and Chan-Vese

Otsu's method: Chooses two threshold values and group pixels into 3 classes such that the intra-class variance $v_{total}^2 = v_1^2 + v_2^2 + v_3^2$ is minimized. Here v_i^2 is the variance within the *i*'th class.

Chan-Vese: Splits the image, u(x, y), into a background and inclusion by finding a curve C with closed components and $c_1, c_2 \in \mathbb{R}$ that minimize

$$\begin{split} F(C,c_1,c_2) &= \mu \cdot \mathsf{length}(C) + \cdot \int_{\mathsf{inside}(C)} |u(x,y) - c_1|^2 dx dy \\ &+ \int_{\mathsf{outside}(C)} |u(x,y) - c_2|^2 dx dy, \end{split}$$

where $\mu > 0$.

Results - Segmentation comparison

DTU

Level Set Parametrization

Key idea: Use smooth level-set functions ϕ_1 and ϕ_2 to describe two regions

 $\Omega_1 = \{ x \in \Omega : \phi_1 > 0, \phi_2 < 0 \}, \qquad \Omega_2 = \{ x \in \Omega : \phi_1 < 0, \phi_2 > 0 \}.$

Parametrize conductivity from known contrasts and background $\sigma_2 < \sigma_0 < \sigma_1$

$$\sigma(\phi_1, \phi_2) = \sigma_0 \chi_{\Omega \setminus (\Omega_1 \cup \Omega_2)} + \sigma_1 \chi_{\Omega_1} + \sigma_2 \chi_{\Omega_2}.$$
(1)

Level Set Parametrization

Key idea: Use smooth level-set functions ϕ_1 and ϕ_2 to describe two regions

 $\Omega_1 = \{ x \in \Omega : \phi_1 > 0, \phi_2 < 0 \}, \qquad \Omega_2 = \{ x \in \Omega : \phi_1 < 0, \phi_2 > 0 \}.$

Parametrize conductivity from known contrasts and background $\sigma_2 < \sigma_0 < \sigma_1$

$$\sigma(\phi_1, \phi_2) = \sigma_0 \chi_{\Omega \setminus (\Omega_1 \cup \Omega_2)} + \sigma_1 \chi_{\Omega_1} + \sigma_2 \chi_{\Omega_2}.$$
(1)

Level Set method

 $\underset{\sigma}{\operatorname{argmin}} \quad \|L_{\Delta e}(F(\sigma) - F(\sigma_0) - \Delta V)\|_2^2 + \beta \|\sigma\|_{\mathrm{TV}} + \|L_{\mathrm{spatial}}\sigma\|_2^2$

⁶Chan and Tai 2004.

⁷Chung, Chan, and Tai 2005.

16 DTU Compute

Level Set method

$\underset{\phi_1,\phi_2}{\operatorname{argmin}} \quad \|L_{\Delta e}(F(\sigma) - F(\sigma_0) - \Delta V)\|_2^2 + \beta \|\sigma\|_{\mathrm{TV}} + \|L_{\mathrm{spatial}}\sigma\|_2^2$

⁶Chan and Tai 2004.

⁷Chung, Chan, and Tai 2005.

Level Set method

$$\underset{\phi_1,\phi_2}{\operatorname{argmin}} \|L_{\Delta e}(F(\sigma) - F(\sigma_0) - \Delta V)\|_2^2 + \beta \|\sigma\|_{\mathrm{TV}} + \|L_{\mathrm{spatial}}\sigma\|_2^2$$
Algorithm⁶,⁷:

• Use previous method for a starting guess of ϕ_1, ϕ_2

• Re-initialization

Perform gradient descent

4 Convergence?

⁷Chung, Chan, and Tai 2005.

16 DTU Compute

⁶Chan and Tai 2004.

Observation: When taking gradient descent steps, high-frequency components appear in ϕ_i .

Observation: When taking gradient descent steps, high-frequency components appear in ϕ_i .

(a) Iteration 16 of ϕ_1

Observation: When taking gradient descent steps, high-frequency components appear in ϕ_i .

DTU

DTU

Step 3

Observation: When taking gradient descent steps, high-frequency components appear in ϕ_i .

Observation: When taking gradient descent steps, high-frequency components appear in ϕ_i .

3 We go from (b) to (c) (re-initialize), every now and again. This is done by solving

$$\frac{\partial \phi}{\partial t} + \operatorname{sign}(\phi)(|\nabla \phi| - 1) = 0, \quad \phi(x, 0) = \phi_i(x)$$

Results - Level set method

DTU

KTC 2023 participants

- 7 teams participated from Brazil, USA, Italy, France, UK, Germany, Finland, Denmark
- Several methods purely model based
- Several methods purely learning based
- Combinations of model and learning

KTC 2023 results - level 1

KTC 2023 results - level 7 Ground truth 01_A 01_B 02_A 02_B 02_C 02_D 02_E 02_F 02_{G} 02_H 05_A 05_C 02_I 03_A 05_B 042 06_A 06_B 06_C 07_A 07_B 07_C

Scores

Team	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Level 7	Total score	Position
01_A	2.7332	2.49	2.096	1.7906	1.1008	1.5369	1.2217	12.9692	2nd
01_{B}	2.6958	2.2986	1.7392	1.337	0.89113	1.5005	1.2739	11.7361	
02_A	2.6391	2.062	1.5481	1.5187	1.1712	1.4864	1.0544	11.4798	
02_B	2.7752	2.5928	1.6347	1.6826	0.68885	1.5384	0.89256	11.8051	
02_C	2.6735	2.3062	1.539	1.5906	1.634	1.3807	1.2304	12.3545	
02_D	2.6053	2.2298	1.5614	1.34	1.0327	1.3064	1.3383	11.4139	
02_E	2.2817	1.9958	1.7565	0.74531	0.51193	0.92468	1.0003	9.2162	
02_F	2.2757	2.1358	1.1821	0.88682	0.81082	1.0623	1.1293	9.4829	
02_G	2.3189	2.5795	1.8751	1.625	1.4768	1.4757	1.6901	13.0411	2nd
02_H	2.0974	2.3789	1.7653	1.461	1.4213	1.4395	1.5434	12.1068	
02I	2.3592	2.164	1.9833	1.3708	0.8416	1.0027	1.2678	10.9894	
03_A	1.2576	1.433	1.2946	0.5073	0.75052	0.76806	0.04045	6.0515	6th
04	2.5686	2.5025	1.7698	1.7589	1.3528	0.69271	1.1263	11.7717	3rd
05_A	1.8315	1.6339	1.6676	0.69606	0.62452	0.90694	0.88562	8.2461	
05_B	2.5278	2.1522	1.4629	1.1144	0.77772	0.26107	0.80284	9.099	
05_C	2.1233	1.6436	1.5691	1.277	1.0239	0.5796	1.0899	9.3065	4th
06_A	2.7253	2.6482	2.2765	1.8587	2.0567	1.9751	1.4228	14.9633	
06_B	2.8436	2.6952	2.6248	1.9391	2.2139	2.0089	1.703	16.0285	1st
06_C	2.7888	2.6357	2.5439	1.8836	2.0827	1.837	1.7794	15.5512	
07_A	2.2228	1.5391	1.0198	0.79026	0.9184	0.49126	0.55665	7.5383	
07_B	2.7796	2.643	1.2223	1.1925	1.1958	0.78049	0.86157	10.6753	5th
07_C	2.2373	2.4427	1.1819	1.351	0.74942	0.91403	0.87905	9.7555	

Sparsity regularization

For chosen basis $\{\phi_i\}$, consider l^1 minimization

$$\underset{x}{\operatorname{argmin}} \left\{ \frac{1}{2} \|Kx - y\|^2 + \alpha \sum_{i} |(x, \phi_i)| \right\}.$$

DTU

Sparsity regularization

For chosen basis $\{\phi_i\}$, consider l^1 minimization

$$\underset{x}{\operatorname{argmin}} \left\{ \frac{1}{2} \|Kx - y\|^2 + \alpha \sum_{i} |(x, \phi_i)| \right\}.$$

Remarkable fact: $x = \gamma \phi_j$ does *not* solve

$$\underset{x}{\operatorname{argmin}} \left\{ \frac{1}{2} \| Kx - K\phi_j \|^2 + \alpha \sum_i |(x, \phi_i)| \right\}.$$

Sparsity regularization

For chosen basis $\{\phi_i\}$, consider l^1 minimization

$$\underset{x}{\operatorname{argmin}} \left\{ \frac{1}{2} \| Kx - y \|^2 + \alpha \sum_{i} |(x, \phi_i)| \right\}.$$

Remarkable fact: $x = \gamma \phi_j$ does *not* solve

$$\underset{x}{\operatorname{argmin}} \left\{ \frac{1}{2} \| Kx - K\phi_j \|^2 + \alpha \sum_i |(x, \phi_i)| \right\}$$

But $x = \gamma \phi_j$ solves

$$\min_{x} \left\{ \frac{1}{2} \| \boldsymbol{K}_{k}^{\dagger} \boldsymbol{K}_{k} \boldsymbol{x} - \boldsymbol{K}_{k}^{\dagger} \boldsymbol{K} \boldsymbol{\phi}_{j} \|^{2} + \alpha \sum_{i} w_{k,i} |(\boldsymbol{x}, \boldsymbol{\phi}_{i})| \right\}$$

for K_k the restricted/truncated SVD operator and weights

$$w_{k,i} = \begin{cases} \|K_k^{\dagger} K_k \phi_i\| & \text{if } \|K_k^{\dagger} K_k \phi_i\| \ge \tau, \\ \tau & \text{if } \|K_k^{\dagger} K_k \phi_i\| < \tau. \end{cases}$$

We approach the Kuopio Tomography Challenge 2023 with $K=J(x_0)$ and $\{\phi_i\}$ the computational FEM basis by weighted sparsity

$$\underset{x}{\operatorname{argmin}} \left\{ \frac{1}{2} \| K_k \Delta \sigma - \Delta V \|^2 + \alpha \sum_i w_{k,i} |(\Delta \sigma, \phi_i)| \right\}$$

with K_k the restricted linearized forward operator.

Final remarks

- \bullet Code provided from organizers used as base + FEniCS
- https://github.com/CUQI-DTU/KTC2023-CUQI7
- The FIPS challenges include, Deblurring (2021), CT(2022), EIT (2023) and Speech (2024). Great data sets for research and education.

References

Amal Mohammed A Alghamdi, Martin Sæbye Carøe, Jasper Marijn Everink, Jakob Sauer Jørgensen, Kim Knudsen, Jakob Tore Kammeyer Nielsen, Aksel Kaastrup Rasmussen, Rasmus Kleist Hørlyck Sørensen and Chao Zhang,

Spatial regularization and level-set methods for experimental electrical impedance tomography with partial data, Applied Mathematics for Modern Challenges 2024, 10.3934/ammc.2024013.

② Ole Løseth Elvetun, Kim Knudsen and Bjørn Fredrik Nielsen, Fictitious null spaces for improving the solution of injective inverse problems, Inverse Problems 2024, 10.1088/1361-6420/ad9fa1

Final remarks

- \bullet Code provided from organizers used as base + FEniCS
- https://github.com/CUQI-DTU/KTC2023-CUQI7
- The FIPS challenges include, Deblurring (2021), CT(2022), EIT (2023) and Speech (2024). Great data sets for research and education.

References

Amal Mohammed A Alghamdi, Martin Sæbye Carøe, Jasper Marijn Everink, Jakob Sauer Jørgensen, Kim Knudsen, Jakob Tore Kammeyer Nielsen, Aksel Kaastrup Rasmussen, Rasmus Kleist Hørlyck Sørensen and Chao Zhang,

Spatial regularization and level-set methods for experimental electrical impedance tomography with partial data, Applied Mathematics for Modern Challenges 2024, 10.3934/ammc.2024013.

Ole Løseth Elvetun, Kim Knudsen and Bjørn Fredrik Nielsen, Fictitious null spaces for improving the solution of injective inverse problems, Inverse Problems 2024, 10.1088/1361-6420/ad9fa1

Thank you for the attention!

