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Inverse Problems in Radiative Transport
Overview of Talk

Photon propagation can be described by a range of models from fully
transportive to fully diffusive

Deterministic models are complex to solve and exhibit bias due to
modelling error

Stochastic models are accurate and unbiased but exhibit high variance

In this talk we leverage three recent developments that allow the use of
stochastic models in solving non-linear inverse problems for the first time

1 Adjoint Monte Carlo that allows fast computation of unbiased
estimates of the backprojection operator in optical tomography

2 Radiance Monte Carlo that efficiently computes the distribution of
photon directions in space

3 Stochastic Gradient Methods that allow the estimation of inverse
problem solutions from inaccurate (but unbiased) estimates of
functional gradients.
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Photon Modelling in Tomography
Physical Models of Photon Propagation

The Radiative Transfer Equation (RTE) is a natural description of light
considered as photons. It represents a balance equation where photons in a
constant refractive index medium, in the absence of scattering, are
propagated along rays l := r0 + l ŝ

ŝ · ∇ϕ+ µaϕ = 0 ≡ Tµaϕ = 0 (1)

whose solution

ϕ = ϕ0 exp

[
−
∫

l
µa(r0 + l ŝ)dl

]
(2)

is the basis for the definition of the Ray Transform

gŝ(p) := − ln

[
ϕ

ϕ0

]
=

∫ ∞

−∞
µa(pŝ⊥ + l ŝ)dl ≡ gŝ = Rŝµa (3)
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Photon Modelling in Tomography
The Radiative Transfer Equation

In the presence of scattering, and with source terms q, eq.(1) becomes

(ŝ · ∇+ µa(r) + µs(r))ϕ(r , ŝ) = µs

∫
Sn−1

Θ(ŝ, ŝ′
)ϕ(r , ŝ′

)d ŝ′
+ q(r , ŝ)

≡ [Tµtr − µsS]︸ ︷︷ ︸
L

ϕ = q (4)

µtr = µs + µa is the attenuation coefficent
S is the scattering operator, (local, non propagating).
Method of successive approximation (Sobolev 1963) :

ϕ =
[
T −1
µtr

+ T −1
µtr

µsST −1
µtr

+ . . .
(
T −1
µtr

µsS
)k T −1

µtr
. . .

]
q (5)

The first term may be found from the Ray Transform, giving an alternative
equation for the collided flux

[Tµtr − µsS]ϕcollided = µsS T −1
µtr

q︸ ︷︷ ︸
uncollided

(6)
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Modelling in Optical Tomography

Light scattering

Experiment by Nina Schotland (age 8)
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Modelling in Optical Tomography
RTE solutions
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Modelling of Photon Propagation
The Monte Carlo Approach
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Modelling of Photon Propagation
Reciprocity and adjoints

A standard reciprocity theorem for the Boltzmann equation is given in Case
and Zweifel, section 2.7:

Gϕ(r , ŝ; r0, ŝ0) = Gϕ(r0,−ŝ0; r − ŝ)

which states that the angular density (radiance) at r in direction ŝ due to a
source at r0 in direction ŝ0 is the same as the angular density (radiance) at r0
in direction −ŝ0 due to a source at r in direction −ŝ. By integrating over −ŝ0
we obtain

Gϕ(r , ŝ;q(r0)) = GΦ(r0; r − ŝ)

which states that the angular density (radiance) at r in direction ŝ due to a
point isotropic source at r0 is the same as the photon density (fluence) at r0
due to a source at r in direction −ŝ.
These basic relations give rise to the adjoint formulation of the sensitivity
relations for the Boltzmann equation, and thus detemine how to set up our
key method : (Adjoint) Radiance Monte Carlo
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Modelling of Photon Propagation
Radiance Monte Carlo : Direct and adjoint
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Deterministic Reconstruction based on RTE
Forward Model

We define a forward model as the composition

y = f (x) = M◦A(x) = M◦ K (x , ϕ) = M◦ K
(
x ,L−1(x)q

)
where x =

(
µa
µs

)
and K (x , ϕ) is a functional of radiance ϕ and parameters x

The inverse problem is to recover x from (sufficient) measurements y .
We treat this as minimisation of a cost function

F =
1
2

∫
Ω

(yobs − y)2dr =
1
2
〈
yobs − y , yobs − y

〉
L2(Ω)

. (7)

then the Fréchet derivative of F is

DF = −
〈

yobs − y ,Df
(
µδ

a
µδ

s

)〉
L2(Ω)

, (8)

where µδ
a , µ

δ
s are small changes in absorption and scattering.
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Deterministic Reconstruction based on RTE
General case

Writing the Fréchet derivative of K as

DK =
∂K
∂x

+
∂K
∂ϕ

∂ϕ

∂x
, (9)

we arrive at

DF = −
〈
∂K
∂x

M∗(yobs − y), xδ

〉
L2(Ω)

−
〈
∂K
∂ϕ

M∗(yobs − y), ϕδ

〉
L2(Ω)n×Sn−1)

.

(10)
Next, we define the adjoint radiance, ϕ∗, as the solution to

L∗ϕ∗ =
∂K
∂ϕ

M∗(yobs − y) (11)

where the right hand side describes the “adjoint source’.’ We then substitute
the above into eq. 10 to give

DF = −
〈
∂K
∂x

M∗(yobs − y), xδ

〉
L2(Ω)

−
〈
L∗ϕ∗, ϕδ

〉
L2(Ω×Sn−1)

(12)

= −
〈
∂K
∂x

M∗(yobs − y), xδ

〉
L2(Ω)

−
〈
ϕ∗,Lϕδ

〉
L2(Ω×Sn−1)

. (13)
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Deterministic Reconstruction based on RTE
General case

Consider a change to eq. 4 where µa → µa + µδ
a , µs → µs + µδ

s , for the same
source q, which results in a change in radiance ϕ → ϕ+ ϕδ. This implies(

Tµa+µδ
a ,µs+µδ

s
− Sµs+µδ

s

) (
ϕ+ ϕδ

)
= (Tµa,µs − Sµs)ϕ

⇒ (Tµa,µs − Sµs)ϕ
δ = −(µδ

a + µδ
s + Sµδ

s
)ϕ (14)

Lµa,µsϕ
δ = − (µδ

a + µδ
s + Sµδ

s
)︸ ︷︷ ︸

Lδ

µδ
a ,µδ

s

ϕ . (15)

We have

DF = −
〈
∂K
∂x

M∗(yobs − y), xδ

〉
L2(Ω)

−
〈
ϕ∗ϕ, µδ

a

〉
L2(Ω×Sn−1)

, (16)

allowing us to define the gradients
∂F
∂µa

= − ∂K
∂µa

M∗(yobs − y)−
∫

Sn−1
ϕ∗(ŝ)ϕ(ŝ) dŝ (17)

∂F
∂µs

= − ∂K
∂µs

M∗(yobs − y)−
∫

Sn−1
ϕ∗(ŝ)

[
I −

∫
Sn−1
Θ(ŝ, ŝ′

)ϕ((ŝ′
) dŝ′

]
dŝ(18)
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Fully Stochastic Reconstruction (FSR)
FSR : Introduction

Solving inverse radiative transport problems requires an accurate
forward model

Deterministic RTE is computationally expensive and needs adapting to
problem domain

Stochastic Monte Carlo modelling is "arbitrarily accurate" in expectation
but not an operator between Banach spaces

One possible approach is to run forward and adjoint MC to "sufficient"
accuracy and use as a proxy for deterministic RTE [Hochuli, Powell, A,
Cox 2016]

New idea : use few-photons MC as approximate (inaccurate) model and
leverage methods from Adaptive Stochastic Gradient Descent (ASGD)
[Bollapragada, Byrd, Nocedal 2018].

Related to MC3 for posterior samlping using inaccurate forward models
[Bal. Langmore, Marzouk, 2013].
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FSR : Introduction
Subsets : Why Does it Work ?

Figure courtesy Kris Thielemans

The black crosses are the ML
solutions when using each subset
of the data (i.e. each subset will
have a slightly different ML
solution).
The arrows indicate an update (3
subsets). They point "towards" the
ML solution of the subset.
As long as we are "far" away from
the ML solutions, it doesn’t matter
which subset we use.
However, once we start to get
"close", then each update will be
somewhat different, and actually
no longer point towards the true
ML solution.
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FSR : Introduction
Subsets : Close to convergence

After a lot of iterations, subsets
will usually cycle between different
images. The ML solutions for
each subset will usually not be
identical. Therefore, each update
will change the image "towards"
the ML-solution for the subset that
it uses.
A few different strategies can be
used to solve this problem:

(i) reduce the number of
subsets after a few iterations
(i.e. increase the size of data
considered in each subset).

(ii) use "relaxation" (i.e. reduce
the update step-size),
[Block-RAMLA].
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FSR : Introduction
Stochastic Gradient Descent

Deterministic model : gradient descent method ("Batch Gradient
Descent"), with step size αn ("training rate")

xn = xn−1 − αn∇F (xn−1) ,
Converges if limn→∞ F (xn) = 0.

Stochastic setting : true cost F and gradient ∇F not directly available
⇒ use (unbaised) estimates of the cost function and gradient

E[FSn(xn)] = F (xn) , E[∇FSn(xn)] = ∇F (xn) ,

Here Sn denotes the nth “sample” used in the computation.

In Monte Carlo modelling of radiative transport, the sample refers to the
set of virtual photons (and their associated random number seeds) that
are initiated in the simulation to represent an optical source, which are
subsequently used to estimate F (xn) and ∇F (xn).
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FSR : Introduction
Stochastic Gradient Descent

The stochastic version of Gradient Descent (SGD) thus attempts to
minimize a sampled objective function, FSn , by updating the previous
iterate with a scaled sampled gradient,

xn = xn−1 − αn∇FSn(xn−1) .

If αn is fixed for all n, eventually there will come a point where the next
update of the estimate (with the term αn∇FSn(xn−1)) will reliably “undo”
the work of the prior step, which will effectively halt the descent. The
point at which this occurs depends on the variance of ∇FSn . We can see
this by re-writing the sampled stochastic gradient estimate as,

∇FSn(xn) = ∇F (xn) + ϵSn(xn) ,

where ϵ is a random vector with E[ϵSn(xn)] = 0 for all n.
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FSR : Introduction
Stochastic Gradient Descent

To prevent iteration gradient steps becoming comparable to a random
walk, we may:

i) reduce the step size at each iteration such that we can avoid
“backtracking” in the descent, or

ii) gradually improve the accuracy of our sampled gradient such that
the variance of the sampled gradient remains below some
threshold value compared to the norm of the true gradient ∇F .

Second point tries to ensure the inequality

norm test V 2
tot(xn) :=

E
[
|ϵSn(xn)|2

]
|∇F (xn)|2

≤ γ2
tot , γtot > 0. (19)

where γtot is a positive coefficient describing the acceptable threshold.

Alternatively restrict the component of variance in the sampled gradient
parallel to the true gradient ∇F ,

inner product test V 2
∥ (xn) :=

E
[
⟨ϵSn(xn),∇F (xn)⟩2

]
|∇F (xn)|4

≤ γ2
∥ , γ∥ > 0.

(20)
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FSR : Introduction
Adaptive Sample Size

Increasing the sample size in the event where the inner product and/or
norm tests fail can be done in a number of ways. A simple method is to
scale the current sample size by some factor κ(n), to increase the
number of photons used in the next iteration,

|Sn+1| = κ(n) |Sn|

One option for κ(n) is to use the same factor by which the variance
exceeds our imposed limit at a given point in the descent. For instance,
upon failure of the inner product test for a chosen value of γ∥, we can
increase the sample size on the next iteration using κ(n) = V 2

∥ (xn)/γ
2
∥ .

However, we also investigate other forms of κ(n) in the results, which
better cope with statistical variations that can lead to over-estimating the
required sample size increase.
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FSR : Introduction
Adaptive Step Size

If we are bounding the error in the sampled gradient, e.g. by increasing
the sample size, then fixed step SGD may converge so long as the
following is satisfied for all n [Bollapragada, Byrd, Nocedal 2018].

αn ≤ 1
(1 + γ2

tot)L
,

where L is the Lipschitz constant for F . This has to be estimated for a
stochastic forward model such as Monte Carlo

As intuition indicates, when the sample size (e.g number of simulated
photons) increases towards the maximum number of samples
|Sn| → |Smax| (|Smax| = ∞ in the case of Monte Carlo RTE simulations),
the expected error in the sampled gradient approaches zero, |ϵSn | → 0,
as do the measures of variance in the sampled gradients (V 2

tot → 0,
V 2
∥ → 0), as defined in eq. 19 and eq. 20. In other words, as the

stochasticity in the problem reduces to zero, we approach the classical
step size of the deterministic problem given by α = 1

L [Nesterov 2013].
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tot → 0,
V 2
∥ → 0), as defined in eq. 19 and eq. 20. In other words, as the

stochasticity in the problem reduces to zero, we approach the classical
step size of the deterministic problem given by α = 1

L [Nesterov 2013].
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FSR : Introduction
Gradient Descent
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FSR : Introduction
Stochastic Gradient Descent
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FSR : Introduction
Adaptive Stochastic Gradient Descent
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FSR : Introduction
Inverse MC algorithm
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FSR : Testing
Setup for Quantitative Photoacoustic Tomography

Medium

Acoustic wave

Acoustic Sensor/ Transducer

Optical source
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FSR : Testing
QPAT algorithm
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FSR : Testing

Strategy Step Size, αn Sample Size, |Sn+1| = κ(n)|Sn|

1 1
(1+γ2

tot)L
|Sn+1| = V 2

tot
γ2

tot
|Sn|

2 1
(1+V 2

tot)L
|Sn+1| =

V 2
∥

γ2
∥
|Sn|

3 1
(1+Vtot)L |Sn+1| =

V∥
γ∥
|Sn|

Table: Table showing the different inversion strategies used. Strategy 1 has a
constant step size, with adaptive sample size. Strategies 2 & 3 both have
adaptive step sizes, and adaptive sample sizes. Note that in accordance with
Algorithm 1 the sample size is only increased upon a failure of the relevant
test. If the test passes, then |Sn+1| = |Sn|.
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FSR : Results

0 0.5 1 1.5 2
0
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(a)
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0.4
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0.8
(b)

Strategy 1,  = 4

Strategy 2,  = 20

Strategy 3,  = 10

Ground truth 

Measured data ,  

Strategy 1,  = 4

Strategy 2,  = 20

Strategy 3,  = 10

Figure: QPAT inversion: (a) - Ground truth absorption distribution, µtrue
a , and

estimated absorption distribution µa at the point where the photon budget is
expended, using each of the three strategies with the stated values of γtot or
γ∥. (b) - Associated measured data from ground truth medium, and simulated
forward data at the end of the inversion using each strategy.
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FSR : Results

100 101 102 103 104

Iteration, (n)

10-4

10-3

10-2

10-1
(a)

100 101 102 103 104

Iteration, (n)

10-5

10-4

10-3

10-2
(b)

Strategy 1,  = 4

Strategy 2,  = 20

Strategy 3,  = 10

Strategy 1,  = 4

Strategy 2,  = 20

Strategy 3,  = 10

Figure: QPAT inversion: (a) - Sampled cost function, FSn , as a function of
iteration, n. (b) - Error in absorption estimate, Fµa , as a function of iteration, n.
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FSR : Results

100 101 102 103 104
10-4

10-3

10-2

10-1

100 (a)

100 101 102 103 104
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103

104 (b)

Strategy 1,  = 4

Strategy 2,  = 20

Strategy 3,  = 10

Strategy 1,  = 4

Strategy 2,  = 20

Strategy 3,  = 10

Iteration, (n) Iteration, (n)

Figure: QPAT inversion: (a) - Step sizes, αn, as a function of iteration, n. (b) -
Adaptive sample size, |Sn|, as a function of iteration.
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FSR : Results
Test QPrecon movies
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Radiance Monte Carlo
Computational issues

Radiance Monte Carlo (RMC) is an extension to conventional MC
to allow storage and calculation of radiance.
Storage of phton weights and directions at all points in space is
prohibitive in terms of storage
solution : store spherical harmonic cofficients cj,m,n = ⟨Yn,m, ϕ⟩S2

Integrals on unit shere "naturally" estimated by MC samples.
2D : use Fourier coefficients

Adjoint Issues :
Solution to adjoint RTE is reversal of first order dervative ⇒ store −1n

for radial coefficients
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Radiance Monte Carlo
Radiance Monte Carlo 2D example
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Radiance Monte Carlo
Radiance Monte Carlo 3D example
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Radiance Monte Carlo
Radiance Monte Carlo 3D example
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Radiance Monte Carlo
Radiance Monte Carlo 3D example
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Radiance Monte Carlo
Radiance Monte Carlo 3D example - with void
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Radiance Monte Carlo
Radiance Monte Carlo 3D example - with void
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FSR : Results (2D) : QPAT
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FSR : Results (2D)
QPAT joint recon
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FSR : Results (2D)
DOT joint recon

N Photons : 104, frequency 200MHz, NFourier 3 → 13.
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FSR : Results (2D)
DOT joint recon : ring void case

N Photons : 5.103 → 1.106, frequency 1000MHz, NFourier 3.
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Outline

1 Introduction

2 Modelling of Photon Propagation

3 Deterministic Reconstruction Methods in Inverse Transport

4 Fully Stochastic Reconstruction (FSR) for RTE problems
Example in 1D
Radiance Monte Carlo
Examples in 2D

5 Conclusions and Outlook
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Conclusions and Outlook
Conclusions

Inverse Problems based on Radiative Transport Equation
Several methods for modelling
Stochastic models of light propagation combined with stochastic
optimisation : Fully Stochastic Inversion
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Conclusions and Outlook
Outlook

FSR examples shown were "noise free". Should include explicit
regularisation and/or early stopping
Other noise models for photon counting e.g. Kullback-Leibler,
Wasserstein Distance
Further adaptive subsampling scheme (SAG, SAGA, SARAH etc)
Estimation of Lipschitz coefficient for stochastic forward models
Preconditioning methods
Posterior sampling using MC3.
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