# Source Imaging and the Shower Curtain Effect

Knut Sølna UC Irvine

Collaborator. Josselin Garnier Ecole Polytechnique

#### $\rightarrow$ An interesting phenomenon in optics:

It is possible to see a person behind a shower curtain better than that person can see us.

#### $\rightarrow$ An interesting phenomenon in optics:

It is possible to see a person behind a shower curtain better than that person can see us.

*Wikipedia* : The shower-curtain effect: the observation how nearby (relative to observer) phase front distortions of an optical wave are more severe than remote distortions of the same amplitude.

#### $\rightarrow$ An interesting phenomenon in optics:

It is possible to see a person behind a shower curtain better than that person can see us.

*Wikipedia* : The shower-curtain effect: the observation how nearby (relative to observer) phase front distortions of an optical wave are more severe than remote distortions of the same amplitude.

*ChatGPT*: The shower curtain effect when referring to ChatGPT is a metaphor used to describe a phenomenon where a large language model like ChatGPT can appear to understand a concept or topic better than it actually does, especially when it's closer to the information source

## Imaging Source Behind Shower Curtain

 $\hookrightarrow$  What is resolution as function of curtain's relative placement ?

### Imaging Source Behind Shower Curtain

 $\hookrightarrow$  What is resolution as function of curtain's relative placement ?



## Imaging Source Behind Shower Curtain

 $\hookrightarrow$  What is resolution as function of curtain's relative placement ?



• From Alfred Hitchcock 'Psycho' (1960).

Knut Sølna UC Irvine

## Imaging Through a Complex Section/interface

- Pei et al., Optics and lasers in Engineering., '23;
- $\rightarrow$  Imaging of 1951 USAF resolution chart through ground glass:



# Imaging Through a Complex Section/interface

- Pei et al., Optics and lasers in Engineering., '23;
- $\rightarrow$  Imaging of 1951 USAF resolution chart through ground glass:





# Imaging Through a Complex Section/interface

Pei et al., Optics and lasers in Engineering., '23;
 → Imaging of *1951 USAF resolution chart*

through ground glass:





 $\rightarrow$  Empirically roughly: *'resolution'*  $\propto$  *'source curtain separation'*.

# Propagation-Imaging Through Complex Sections, Set-up



# Propagation-Imaging Through Complex Sections, Set-up



- What can one say about the signal to noise ratio ?
- How does the scattering properties of the complex section affect the shower curtain effect (quantitatively) ?
- What is the effect of bandwidth ?

- $\rightarrow$  Nearfield Randomization better than farfield randomization.
- Jaruwatanadilo et al. *Optical imaging through clouds and fog*, IEEE Trans. on Geoscience and Remote Sensing '03.
- Ishimaru et al., *Time reversal effects in random scattering media on superresolution, shower curtain effects, and backscattering enhancement,* Radio Science '07.

- $\rightarrow$  Nearfield Randomization better than farfield randomization.
- Jaruwatanadilo et al. *Optical imaging through clouds and fog*, IEEE Trans. on Geoscience and Remote Sensing '03.
- Ishimaru et al., *Time reversal effects in random scattering media on superresolution, shower curtain effects, and backscattering enhancement,* Radio Science '07.
- Endrei & Scarcelli, *Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect, Optica* '16.

• Important parameters: Wave-length  $\lambda_0 = \frac{2\pi c_0}{\omega} = \frac{2\pi}{k}$ ; Beam Width  $r_0$ ; Propagation distance *L*;

Additionally random case: Medium coherence length  $\ell$  & fluctuation strength  $\sigma$ .

• Important parameters: Wave-length  $\lambda_0 = \frac{2\pi c_0}{\omega} = \frac{2\pi}{k}$ ; Beam Width  $r_0$ ; Propagation distance *L*;

Additionally random case: Medium coherence length  $\ell$  & fluctuation strength  $\sigma$ .

Medium fluctuations:

$$c^{-2}(z,\mathbf{x}) = c_o^{-2} \begin{cases} 1 + \sigma \mu \left(\frac{z}{\ell}, \frac{\mathbf{x}}{\ell}\right) & \text{if } z \in (z_a, z_b), \\ 1 & \text{else} \end{cases}$$

with  $\mu$  zero-mean, stationary random field, strongly mixing in *z*.

• Important parameters: Wave-length  $\lambda_0 = \frac{2\pi c_0}{\omega} = \frac{2\pi}{k}$ ; Beam Width  $r_0$ ; Propagation distance *L*;

Additionally random case: Medium coherence length  $\ell$  & fluctuation strength  $\sigma$ .

Medium fluctuations:

$$c^{-2}(z,\mathbf{x}) = c_o^{-2} \begin{cases} 1 + \sigma \mu \left(\frac{z}{\ell}, \frac{\mathbf{x}}{\ell}\right) & \text{if } z \in (z_a, z_b), \\ 1 & \text{else} \end{cases}$$

with  $\mu$  zero-mean, stationary random field, strongly mixing in *z*.

• Governing statistics: The *Lateral Spectrum* (in non-dimensionalized coordinates zooming in on the beam):

$$C(\mathbf{ ilde{x}}) = \int_{-\infty}^{\infty} \mathbb{E}\left[\mu(0,\mathbf{0})\mu(\mathbf{ ilde{z}},\mathbf{ ilde{x}})\right] d\mathbf{ ilde{z}}, \quad C(\mathbf{0}) < \infty.$$

• The isotropic paraxial scaling used here  $\lambda_0 \ll \ell, r_0 \ll L$ :

$$rac{\lambda_o}{L} = \mathcal{O}(\epsilon^2); \quad rac{r_0}{L} \sim rac{\ell}{L} = \mathcal{O}(\epsilon); \quad \sigma = \epsilon^{3/2}.$$

• Important parameters: Wave-length  $\lambda_0 = \frac{2\pi c_0}{\omega} = \frac{2\pi}{k}$ ; Beam Width  $r_0$ ; Propagation distance *L*;

Additionally random case: Medium coherence length  $\ell$  & fluctuation strength  $\sigma$ .

Medium fluctuations:

$$c^{-2}(z,\mathbf{x}) = c_o^{-2} \begin{cases} 1 + \sigma \mu \left(\frac{z}{\ell}, \frac{\mathbf{x}}{\ell}\right) & \text{if } z \in (z_a, z_b), \\ 1 & \text{else} \end{cases}$$

with  $\mu$  zero-mean, stationary random field, strongly mixing in *z*.

• Governing statistics: The *Lateral Spectrum* (in non-dimensionalized coordinates zooming in on the beam):

$$C( ilde{\mathbf{x}}) = \int_{-\infty}^{\infty} \mathbb{E}\left[\mu(0,\mathbf{0})\mu( ilde{z}, ilde{\mathbf{x}})
ight] d ilde{z}, \quad C(\mathbf{0}) < \infty.$$

• The isotropic paraxial scaling used here  $\lambda_0 \ll \ell, r_0 \ll L$  :

$$rac{\lambda_o}{L} = \mathcal{O}(\epsilon^2); \quad rac{r_0}{L} \sim rac{\ell}{L} = \mathcal{O}(\epsilon); \quad \sigma = \epsilon^{3/2}.$$

• Borcea, Garnier & S. Paraxial wave propagation in random media with long-range correlations, SIAP '23.

Knut Sølna UC Irvine

#### Basics set-up Paraxial Wave Equation

Time harmonic form of scalar wave equation:

$$(\partial_z^2 + \Delta_\perp)\hat{u} + k^2\hat{u} = 0,$$

boundary/radiation conditions.  $k = \omega/c_0$  is the wave number.

• Slowly-varying envelope around a plane wave going in the z direction

$$\hat{u}(\omega, z, \mathbf{x}) = e^{ikz} \hat{a}(\omega, z, \mathbf{x})$$

#### Basics set-up Paraxial Wave Equation

Time harmonic form of scalar wave equation:

$$(\partial_z^2 + \Delta_\perp)\hat{u} + k^2\hat{u} = 0,$$

boundary/radiation conditions.  $k = \omega/c_0$  is the wave number.

• Slowly-varying envelope around a plane wave going in the z direction

$$\hat{u}(\omega, z, \mathbf{x}) = e^{ikz} \hat{a}(\omega, z, \mathbf{x})$$

 $\to$  Diffractive effects (spreading/bending of beam) in homogeneous medium of order one ( $\lambda_0 \ll \ell, r_0 \ll L$ ):

$$\underbrace{\frac{\partial_z^2 \hat{a}}{\partial_z^2}}_{\sim \frac{1}{L^2}} + \underbrace{\frac{2ik\partial_z \hat{a}}{\partial_z L}}_{\sim \frac{1}{\lambda_0 L}} + \underbrace{\Delta_{\perp} \hat{a}}_{\sim \frac{1}{L^2}} = 0$$

# Itô-Schrödinger and damping of mean field

• Wavefield described in distribution in regime of small  $\epsilon$  by:

$$\rightarrow d_z \hat{a} = \frac{1}{2ik} \Delta_{\perp} \hat{a} - \frac{k^2 C(\mathbf{0})}{8} \hat{a} + \frac{ik}{2} \hat{a} dW_z, \quad \hat{u}(\omega, z, \mathbf{x}) = e^{ikz} \hat{a}(\omega, z, \mathbf{x})$$

gives (with Brownian field W having lateral spectrum C):

$$\partial_z \mathbb{E}[\hat{a}] = rac{1}{2ik} \Delta_\perp \mathbb{E}[\hat{a}] - rac{k^2 C(\mathbf{0})}{8} \mathbb{E}[\hat{a}].$$

Then

$$\mathbb{E}[\hat{a}(\boldsymbol{\omega}, z, \mathbf{x})] = \hat{a}_0(\boldsymbol{\omega}, z, \mathbf{x}) \exp\left(-\frac{z}{\ell_{\mathrm{sca}}}\right),$$

for  $\hat{a}_0$  solution in homogeneous medium and we defined the scattering mean free path:

$$\ell_{\rm sca} = \frac{8}{k^2 C(\mathbf{0})} = \frac{2}{\pi^2} \frac{\lambda_0^2}{C(\mathbf{0})} \sim L$$

• Garnier & S. Coupled paraxial wave equations in random media in the white-noise regime, Annals of Applied Prob '09.

# Warm-up: Field Observations and Matched Field Imaging

• Compute correlation between the observed field at z = L and the synthetic field in homogeneous medium generated by a point source at **x** Set-up:  $L, c_o$  known; infinite aperture  $D = \infty$ ;  $a \mapsto \hat{u}$ ,  $\Delta z = z_b - z_a$  width of complex section:

$$\mathcal{U}(\mathbf{x}) = \frac{ik_o}{2\pi L} \int_{\mathbb{R}^2} \hat{u}(\mathbf{y}, L) \exp\left(-\frac{ik_o |\mathbf{x} - \mathbf{y}|^2}{2L}\right) \mathrm{d}\mathbf{y}.$$

$$\mathbb{E}[\mathcal{U}(\mathbf{x})] = f(\mathbf{x}) \exp\left(-\frac{k_o^2 C(\mathbf{0}) \Delta z}{8}\right) = \underbrace{f(\mathbf{x})}_{\text{'source'}} \exp\left(-\frac{\Delta z}{\ell_{\text{sca}}}\right)$$

# Warm-up: Field Observations and Matched Field Imaging

• Compute correlation between the observed field at z = L and the synthetic field in homogeneous medium generated by a point source at **x** Set-up: *L*, *c*<sub>o</sub> known; infinite aperture  $D = \infty$ ;  $a \mapsto \hat{u}$ ,  $\Delta z = z_b - z_a$  width of complex section:

$$\mathcal{U}(\mathbf{x}) = \frac{ik_o}{2\pi L} \int_{\mathbb{R}^2} \hat{u}(\mathbf{y}, L) \exp\left(-\frac{ik_o |\mathbf{x} - \mathbf{y}|^2}{2L}\right) \mathrm{d}\mathbf{y}.$$

$$\mathbb{E}\left[\mathcal{U}(\mathbf{x})\right] = f(\mathbf{x})\exp\left(-\frac{k_o^2 C(\mathbf{0})\Delta z}{8}\right) = \underbrace{f(\mathbf{x})}_{\text{'source'}}\exp\left(-\frac{\Delta z}{\ell_{\text{sca}}}\right)$$

- No shower curtain effect for resolution.
- Poor imaging with strong clutter when  $\Delta z \gtrsim \ell_{\rm sca}$ .
- In case with finite detector aperture *D* image additionally blurred with Gaussian kernel with width  $\lambda_o L/D$  (the Rayleigh resolution formula).

Knut Sølna UC Irvine

• The *mean* Wigner transform is defined by

$$W_{\mathrm{m}}(\mathbf{x},\xi,z) := \int_{\mathbb{R}^2} \expig(-i\xi\cdot\mathbf{q}ig) \mathbb{E}\left[\hat{u}ig(\mathbf{x}+rac{\mathbf{q}}{2},z)\overline{\hat{u}}ig(\mathbf{x}-rac{\mathbf{q}}{2},zig)
ight]\mathrm{d}\mathbf{q},$$

and satisfies a (closed) transport equation and represents an angularly resolved wave energy density.

• The covariance of the image random field can be expressed in terms of the mean Wigner transform:

$$\mathbb{E}\Big[\mathcal{U}(\mathbf{x}+\frac{\rho}{2})\overline{\mathcal{U}(\mathbf{x}-\frac{\rho}{2})}\Big]\sim \int_{\mathbb{R}^2}W_m\big(\mathbf{r},\frac{k_o}{z_1}(\mathbf{r}-\mathbf{x}),z_1\big)\exp\Big(\frac{ik_o}{z_1}(\mathbf{r}-\mathbf{x})\cdot\rho\Big)d\mathbf{r}.$$

• Assume smooth medium fluctuations:  $C(\mathbf{x}) = C(\mathbf{0}) - \frac{|\mathbf{x}|^2}{\ell_{par}} + o(|\mathbf{x}|^2)$ , for the paraxial distance  $\ell_{par}$  the range of validity of the paraxial approximation. Then in strongly heterogeneous case  $\Delta z \gg \ell_{sca}$ , we find using Wigner transform:

$$\operatorname{Var}(\mathcal{U}(\mathbf{x})) = \int_{\mathbb{R}^2} |f(\mathbf{r})|^2 Q(\mathbf{x} - \mathbf{r}) d\mathbf{r},$$
$$Q(\mathbf{r}) = (2\pi\mathcal{R})^{-1} \exp\left(-\frac{|\mathbf{r}|^2}{2\mathcal{R}^2}\right),$$

• Assume smooth medium fluctuations:  $C(\mathbf{x}) = C(\mathbf{0}) - \frac{|\mathbf{x}|^2}{\ell_{par}} + o(|\mathbf{x}|^2)$ , for the paraxial distance  $\ell_{par}$  the range of validity of the paraxial approximation. Then in strongly heterogeneous case  $\Delta z \gg \ell_{sca}$ , we find using Wigner transform:

$$\operatorname{Var}(\mathcal{U}(\mathbf{x})) = \int_{\mathbb{R}^2} |f(\mathbf{r})|^2 Q(\mathbf{x} - \mathbf{r}) d\mathbf{r},$$
$$Q(\mathbf{r}) = (2\pi \mathcal{R})^{-1} \exp\left(-\frac{|\mathbf{r}|^2}{2\mathcal{R}^2}\right),$$

• The shower curtain spreading scale:

$$\mathcal{R} = \mathcal{R}(z_a, \Delta z, \ell_{\text{par}}) = \sqrt{\frac{(z_a + \Delta z)^3 - z_a^3}{6\ell_{\text{par}}}} \propto \begin{cases} \Delta z \sqrt{\frac{\Delta z}{\ell_{\text{par}}}} & \text{for } z_a \ll \Delta z \\ z_a \sqrt{\frac{\Delta z}{\ell_{\text{par}}}} & \text{for } z_a \gg \Delta z \end{cases}$$

# Next: Optical Imaging



# Next: Optical Imaging



ightarrow The recorded intensity in camera plane is :

$$I(\mathbf{x}) \sim \left| \int_{\mathbb{R}^2} \hat{u}(\mathbf{y}, L) \mathcal{T}(\mathbf{y}) \exp\left( i \frac{k_o |\mathbf{x} - \mathbf{y}|^2}{2\Delta L} \right) \mathrm{d}\mathbf{y} \right|^2.$$

Transmission function of lens:  $\mathcal{T}(\mathbf{y}) = \exp\left(-i\frac{k_0|\mathbf{y}|^2}{\mathcal{L}} - \frac{|\mathbf{y}|^2}{2D^2}\right)$ . Photodetector placed so that  $\frac{1}{\mathcal{L}} = \frac{1}{\mathcal{L}} + \frac{1}{\Delta L}$ ,  $\mathcal{L} \sim$  focal length of lens.

# Quantitative Description of Resolution

• Mean image in terms of the mean Wigner transform,  $D = \infty$ :

$$\begin{split} \mathbb{E}[I(\mathbf{x})] &= \sim \int_{\mathbb{R}^2} W_{\mathrm{m}} \Big( \mathbf{r}, \frac{k_o}{\mathcal{L}} \mathbf{r} + \frac{k_o}{\Delta L} (\mathbf{x} - \mathbf{r}), L \Big) \mathrm{d} \mathbf{r} \sim I_{\mathrm{m}} \Big( -\mathbf{x} \frac{L}{\Delta L} \Big), \\ I_{\mathrm{m}}(\mathbf{x}) &= \int_{\mathbb{R}^2} |f(\mathbf{r})|^2 \mathcal{H}(\mathbf{x} - \mathbf{r}) \mathrm{d} \mathbf{r}, \\ \mathcal{H}(\mathbf{y}) &= \exp\left( -\frac{2\Delta z}{\ell_{\mathrm{sca}}} \right) \delta(\mathbf{y}) + \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} \exp\left( i\zeta \cdot \mathbf{y} \right) \\ &\times \Big[ \exp\left( \frac{k_o^2}{4} \int_{z_a}^{z_a + \Delta z} C\left( \zeta \frac{z}{k_o} \right) - C(\mathbf{0}) dz \right) - \exp\left( -\frac{2\Delta z}{\ell_{\mathrm{sca}}} \right) \Big] \mathrm{d} \zeta. \end{split}$$

## Quantitative Description of Resolution

• Mean image in terms of the mean Wigner transform,  $D = \infty$ :

$$\begin{split} \mathbb{E}[I(\mathbf{x})] &= \sim \int_{\mathbb{R}^2} W_{\mathrm{m}} \Big( \mathbf{r}, \frac{k_o}{\mathcal{L}} \mathbf{r} + \frac{k_o}{\Delta L} (\mathbf{x} - \mathbf{r}), L \Big) \mathrm{d} \mathbf{r} \sim I_{\mathrm{m}} \Big( -\mathbf{x} \frac{L}{\Delta L} \Big), \\ I_{\mathrm{m}}(\mathbf{x}) &= \int_{\mathbb{R}^2} |f(\mathbf{r})|^2 \mathcal{H}(\mathbf{x} - \mathbf{r}) \mathrm{d} \mathbf{r}, \\ \mathcal{H}(\mathbf{y}) &= \exp\left( -\frac{2\Delta z}{\ell_{\mathrm{sca}}} \right) \delta(\mathbf{y}) + \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} \exp\left( i\boldsymbol{\zeta} \cdot \mathbf{y} \right) \\ &\times \Big[ \exp\left( \frac{k_o^2}{4} \int_{z_a}^{z_a + \Delta z} C\left( \boldsymbol{\zeta} \frac{z}{k_o} \right) - C(\mathbf{0}) dz \right) - \exp\left( -\frac{2\Delta z}{\ell_{\mathrm{sca}}} \right) \Big] \mathrm{d} \boldsymbol{\zeta}. \end{split}$$

• In smooth strongly heterogeneous case with finite *D* we have:

$$\mathcal{H}(\mathbf{y}) \sim \exp\left(-\frac{|\mathbf{y}|^2}{2\left(\mathcal{R}^2 + \left(\frac{L}{k_o D}\right)^2\right)}\right), \quad \mathcal{R} \approx \begin{cases} \Delta z \sqrt{\frac{\Delta z}{\ell_{\text{par}}}} & \text{for } z_a \ll \Delta z \\ z_a \sqrt{\frac{\Delta z}{\ell_{\text{par}}}} & \text{for } z_a \gg \Delta z \end{cases}$$

#### Performance Example

#### Imaging with 3 locations of random section:



## Performance Example

Imaging with 3 locations of random section:



Figure: Left blurring of mean image increases when the random section is farther from the source,  $f(x) = \exp(-(x - 4r_o)^2/(2r_o^2)) + \exp(-(x + 4r_o)^2/(2r_o^2))$  and  $\mathcal{R}^2 = \frac{(z_b - z_a)^3}{6\ell_{\text{par}}} = \left(\frac{r_o}{5}\right)^2$ .

## Quantitative Description of Stability

• Can we claim  $I(\mathbf{x}) \simeq \mathbb{E}[I(\mathbf{x})]$ ?

## Quantitative Description of Stability

• Can we claim  $I(\mathbf{x}) \simeq \mathbb{E}[I(\mathbf{x})]$ ?

 $\rightarrow$  Need to understand the second-order moment of the imaging function

$$\mathbb{E}\left[I(\mathbf{x})^{2}\right] \sim \iint_{\mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2}} d\mathbf{x}_{1} d\mathbf{x}_{2} d\mathbf{y}_{1} d\mathbf{y}_{2}$$

$$\times \mathbb{E}\left[\hat{u}(\mathbf{x}_{1}, L) \hat{u}(\mathbf{x}_{2}, L) \overline{\hat{u}(\mathbf{y}_{1}, L) \hat{u}(\mathbf{y}_{2}, L)}\right]$$

$$\times \exp\left(-\frac{ik_{o}}{2\mathcal{L}}\left[|\mathbf{x}_{1}|^{2} - |\mathbf{y}_{1}|^{2} + |\mathbf{x}_{2}|^{2} - |\mathbf{y}_{2}|^{2}\right]\right)$$

$$\times \exp\left(\frac{ik_{o}}{2\Delta L}\left[|\mathbf{x}_{1} - \mathbf{x}|^{2} - |\mathbf{y}_{1} - \mathbf{x}|^{2} + |\mathbf{x}_{2} - \mathbf{x}|^{2} - |\mathbf{y}_{2} - \mathbf{x}|^{2}\right]\right).$$

Closed expression for second moment of imaging function in scintillation regime ( $\delta \ll 1$ ):

$$r_0 \rightarrow \frac{r_0}{\delta}, \quad C \rightarrow \delta C, \quad z \rightarrow \frac{z}{\delta}.$$

 $\hookrightarrow$  Calculation reveals lack of statistical stability:  $\operatorname{Var}(I(\mathbf{x})) = \mathbb{E}[I(\mathbf{x})]^2!$ 

#### Broadband to the Rescue

• Use a broadband source:

$$f(\mathbf{x},t) = g(t) \exp\left(-\frac{|\mathbf{x}|^2}{2r_0^2}\right) + c.c., \quad \hat{g}(\omega) = \frac{1}{\sqrt{B}}\hat{g}_0\left(\frac{\omega-\omega_0}{B}\right),$$

and consider the optical imaging function the spatially resolved total wave energy recorded by the photodetector in the camera plane  $(D = \infty)$ :

$$I(\mathbf{x}) \sim \int_{\mathbb{R}} \mathrm{d}t \Big| \int_{\mathbb{R}} \mathrm{d}\omega \int_{\mathbb{R}^2} \mathrm{d}\mathbf{y} \hat{\boldsymbol{\mu}}(\boldsymbol{\omega}, \mathbf{y}, \boldsymbol{L}) \exp\left(i \frac{k(\boldsymbol{\omega})|\mathbf{x} - \mathbf{y}|^2}{2\Delta L} - i \frac{k(\boldsymbol{\omega})|\mathbf{y}|^2}{2\mathcal{L}} - i\boldsymbol{\omega}t\right) \Big|^2.$$

## Broadband to the Rescue

• Use a broadband source:

$$f(\mathbf{x},t) = g(t) \exp\left(-\frac{|\mathbf{x}|^2}{2r_0^2}\right) + c.c., \quad \hat{g}(\omega) = \frac{1}{\sqrt{B}}\hat{g}_0\left(\frac{\omega-\omega_0}{B}\right),$$

and consider the optical imaging function the spatially resolved total wave energy recorded by the photodetector in the camera plane  $(D = \infty)$ :

$$I(\mathbf{x}) \sim \int_{\mathbb{R}} \mathrm{d}t \Big| \int_{\mathbb{R}} \mathrm{d}\omega \int_{\mathbb{R}^2} \mathrm{d}\mathbf{y} \hat{\boldsymbol{\mu}}(\boldsymbol{\omega}, \mathbf{y}, \boldsymbol{L}) \exp\left(i \frac{k(\boldsymbol{\omega}) |\mathbf{x} - \mathbf{y}|^2}{2\Delta L} - i \frac{k(\boldsymbol{\omega}) |\mathbf{y}|^2}{2\mathcal{L}} - i \boldsymbol{\omega} t\right) \Big|^2.$$

 $\rightarrow$  Multifrequency fourth moment gives (strong & smooth case):

• Resolution as in one frequency case,  $(B \ll \omega_0)$  ! •  $\frac{\mathbb{E}[I(\mathbf{x})]^2}{\operatorname{Var}(I(\mathbf{x}))} = O\left(\frac{B}{\Omega_c}\right) \propto (\Delta z)^2.$ 

for the coherence frequency:  $\Omega_c = \left(\frac{c_o \ell_{par}}{\Delta z^2}\right) = T_r^{-1}\left(\frac{\ell_{par}}{\Delta z}\right)$ , (frequency correlation band  $\sim$  reciprocal passage time).

Garnier & S., Shower curtain effect and source imaging, IPI '24.

Derode, Tourin & Fink, Random scattering of ultrsound; is TR self-averaging? Phys Rev E '01.

- Have developed a theory for shower curtain effect in high frequency paraxial regime in a situation with a complex section.
- In a regime of relatively strong scattering anomalous spreading associated with a shower curtain effect.
- Quantitative description of resolution and stability.
- Multifrequency information important for statistical stability.

- Have developed a theory for shower curtain effect in high frequency paraxial regime in a situation with a complex section.
- In a regime of relatively strong scattering anomalous spreading associated with a shower curtain effect.
- Quantitative description of resolution and stability.
- Multifrequency information important for statistical stability.
- In progress with Christophe Gomez; Shower curtain with rough surface:
  - Main modelling Quantity interface diffraction operator:

$$\mathcal{K}^{\epsilon}( au,\omega,\mathbf{q})=rac{\omega^2}{(2\pi)^2}\int e^{i\omega\mathbf{q}\cdot(\mathbf{x}'-\mathbf{x}_a)/(r_0/L)}e^{i\omega au V(\mathbf{x}'/(\ell_c/L)})d\mathbf{x}'.$$

## Technical remarks: On Multifrequency Moment

We consider two frequencies  $\omega_1, \omega_2$  and the fourth-order moment

$$M_2(\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}_1, \mathbf{y}_2, z) = \frac{\mathbb{E}\left[\hat{u}(\omega_1, \mathbf{x}_1, z)\hat{u}(\omega_2, \mathbf{x}_2, z)\overline{\hat{u}(\omega_1, \mathbf{y}_1, z)\hat{u}(\omega_2, \mathbf{y}_2, z)}\right]}{|\hat{g}(\omega_1)|^2|\hat{g}(\omega_2)|^2}$$

It satisfies

$$\frac{\partial M_2}{\partial z} = \frac{i}{2} \Big( \frac{1}{k_1} \Delta_{\mathbf{x}_1} + \frac{1}{k_2} \Delta_{\mathbf{x}_2} - \frac{1}{k_1} \Delta_{\mathbf{y}_1} - \frac{1}{k_2} \Delta_{\mathbf{y}_2} \Big) M_2 \\ - U_2 \Big( \mathbf{x}_1, \mathbf{x}_2, \mathbf{y}_1, \mathbf{y}_2 \Big) \mathbf{1}_{[z_a, z_a + \Delta z]}(z) M_2,$$

with the generalized potential

$$U_{2}(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}_{1}, \mathbf{y}_{2}) = \frac{1}{4} \Big( (k_{1}^{2} + k_{2}^{2})C(\mathbf{0}) - k_{1}^{2}C(\mathbf{x}_{1} - \mathbf{y}_{1}) - k_{2}^{2}C(\mathbf{x}_{2} - \mathbf{y}_{2}) \\ -k_{1}k_{2}C(\mathbf{x}_{1} - \mathbf{y}_{2}) - k_{1}k_{2}C(\mathbf{x}_{2} - \mathbf{y}_{1}) + k_{1}k_{2}C(\mathbf{x}_{1} - \mathbf{x}_{2}) + k_{1}k_{2}C(\mathbf{y}_{1} - \mathbf{y}_{2}) \Big) \\ = \frac{1}{8}\mathbb{E} \Big[ (k_{1}(\tilde{\mu}(\mathbf{x}_{1}) - \tilde{\mu}(\mathbf{y}_{1})) + k_{2}(\tilde{\mu}(\mathbf{x}_{2}) - \tilde{\mu}(\mathbf{y}_{2})))^{2} \Big].$$

• Consider the narrow band scintillation regime:

$$r_0 
ightarrow rac{r_0}{\delta}, \quad C 
ightarrow \delta C, \quad z 
ightarrow rac{z}{\delta}, \quad {\it B} 
ightarrow \delta {\it B}.$$

• Introduce the special Fourier transform of the fourth-order moment :

$$\begin{split} \widetilde{M}_{2}^{\delta}\big(\xi_{1},\xi_{2},\zeta_{1},\zeta_{2},\frac{z}{\delta}\big) &= \iint_{\mathbb{R}^{2}\times\mathbb{R}^{2}\times\mathbb{R}^{2}\times\mathbb{R}^{2}}M_{2}^{\delta}\big(\mathbf{q}_{1},\mathbf{q}_{2},\mathbf{r}_{1},\mathbf{r}_{2},\frac{z}{\delta}\big) \\ &\times e^{-i(\mathbf{q}_{1},\xi_{1}+\mathbf{r}_{1},\zeta_{1}+\mathbf{q}_{2},\xi_{2}+\mathbf{r}_{2},\zeta_{2}}d\mathbf{r}_{1}d\mathbf{r}_{2}d\mathbf{q}_{1}d\mathbf{q}_{2}e^{\frac{iz}{k_{0}\delta}(\xi_{2},\zeta_{2}+\xi_{1},\zeta_{1})}, \end{split}$$

for  $\mathbf{r}_j, \mathbf{q}_j$  Barycentric coordinates.

# On Analysis II

For frequency parameterization:  $\omega_1 = \omega_0 + \delta\omega + \delta\Omega$ ,  $\omega_2 = \omega_0 + \delta\omega - \delta\Omega$ , in the scintillation regime the rescaled function  $\widetilde{M}_2^{\delta}$  satisfies the equation with fast phases :

$$\begin{split} \frac{\partial \widetilde{M}_{2}^{\delta}}{\partial z} &= \frac{i\omega}{k_{o}\omega_{0}} \left(\xi_{1}\cdot\zeta_{1}+\xi_{2}\cdot\zeta_{2}\right) \widetilde{M}_{2}^{\delta} + \frac{i\Omega}{k_{o}\omega_{0}} \left(\xi_{1}\cdot\zeta_{2}+\xi_{2}\cdot\zeta_{1}\right) \widetilde{M}_{2}^{\delta} \\ &+ \frac{k_{o}^{2}}{4(2\pi)^{2}} \mathbf{1}_{[z_{a},z_{a}+\Delta z]}(z) \int_{\mathbb{R}^{2}} \hat{C}(\kappa) \left[ -2 \widetilde{M}_{2}^{\delta}(\xi_{1},\xi_{2},\zeta_{1},\zeta_{2}) \right. \\ &+ \widetilde{M}_{2}^{\delta}(\xi_{1}-\kappa,\xi_{2}-\kappa,\zeta_{1},\zeta_{2}) e^{i\frac{z}{\delta k_{o}}\kappa\cdot(\zeta_{2}+\zeta_{1})} \\ &+ \widetilde{M}_{2}^{\delta}(\xi_{1}-\kappa,\xi_{2},\zeta_{1},\zeta_{2}-\kappa) e^{i\frac{z}{\delta k_{o}}\kappa\cdot(\zeta_{2}+\zeta_{1})} \\ &+ \widetilde{M}_{2}^{\delta}(\xi_{1}+\kappa,\xi_{2}-\kappa,\zeta_{1},\zeta_{2}) e^{i\frac{z}{\delta k_{o}}\kappa\cdot(\zeta_{2}-\zeta_{1})} \\ &+ \widetilde{M}_{2}^{\delta}(\xi_{1}+\kappa,\xi_{2},\zeta_{1},\zeta_{2}-\kappa) e^{i\frac{z}{\delta k_{o}}\kappa\cdot(\zeta_{2}-\zeta_{1})} \\ &- \widetilde{M}_{2}^{\delta}(\xi_{1},\xi_{2}-\kappa,\zeta_{1},\zeta_{2}-\kappa) e^{i\frac{z}{\delta k_{o}}(\kappa\cdot(\zeta_{2}+\xi_{2})-|\kappa|^{2})} \\ &- \widetilde{M}_{2}^{\delta}(\xi_{1},\xi_{2}-\kappa,\zeta_{1},\zeta_{2}+\kappa) e^{i\frac{z}{\delta k_{o}}(\kappa\cdot(\zeta_{2}-\xi_{2})+|\kappa|^{2})} \right] d\kappa, \end{split}$$

$$\widetilde{M}_{2}^{\delta}(\xi_{1},\xi_{2},\zeta_{1},\zeta_{2},\frac{z}{\delta}) = \mathcal{V}(\boldsymbol{K},\boldsymbol{A})_{z} + R_{2}^{\delta}(z,\xi_{1},\xi_{2},\zeta_{1},\zeta_{2}),$$

with 
$$K(z) = (2\pi)^4 \exp\left(-\frac{k_o^2}{4}C(\mathbf{0})\min(\Delta z, (z-z_a)_+)\right)$$

and where the function  $(z,\xi) \mapsto A(z,\xi,\zeta,\Omega)$  is the solution of

$$\partial_{z}A = \frac{i\Omega}{k_{o}\omega_{0}}|\xi|^{2}A + \frac{k_{o}^{2}}{4(2\pi)^{2}}\mathbf{1}_{[z_{a},z_{a}+\Delta z]}(z)\int_{\mathbb{R}^{2}}\hat{C}(\kappa)\left[A(\xi-\kappa)e^{\frac{iz}{k_{o}}\kappa\cdot\zeta} - A(\xi)\right]\mathrm{d}\kappa \\ + \frac{k_{o}^{2}}{4(2\pi)^{2}}K(z)\mathbf{1}_{[z_{a},z_{a}+\Delta z]}(z)\hat{C}(\xi)e^{\frac{iz}{k_{o}}\xi\cdot\zeta},$$

starting from  $A(z = 0, \xi, \zeta, \Omega) = 0$ , and the function  $R_2^{\delta}$  satisfies

$$\sup_{z\in[0,z_1]} \|R_2^{\delta}(z,\cdot,\cdot,\cdot,\cdot)\|_{L^1(\mathbb{R}^2\times\mathbb{R}^2\times\mathbb{R}^2\times\mathbb{R}^2)} \stackrel{\delta\to 0}{\longrightarrow} 0.$$

Garnier & S Speckle memory effect in frequency domain.. SIAM MMS '23.

First wave moments:

$$\mu_1(z, \mathbf{x}) = \mathbb{E}[u(z, \mathbf{x})], \quad \mu_2(z, \mathbf{x}, \mathbf{y}) = \mathbb{E}[u(z, \mathbf{x})\overline{u(z, \mathbf{y})}],$$
  
$$\tilde{\mu}_2(z, \mathbf{x}, \mathbf{y}) = \mu_2(z, \mathbf{x}, \mathbf{y}) - \mu_1(z, \mathbf{x})\mu_1(z, \mathbf{y})$$

 $\rightarrow$  Assuming complex circularly symmetric Gaussian process property:

$$\mathbb{E}[u(z,\mathbf{x}_{1})u(z,\mathbf{x}_{2})\overline{u(z,\mathbf{y}_{1})u(z,\mathbf{y}_{2})}] = \mu_{4}^{G}(z,\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{y}_{1},\mathbf{y}_{2})$$

$$= \mu_{1}(z,\mathbf{x}_{1})\mu_{1}(z,\mathbf{x}_{2})\mu_{1}(z,\mathbf{y}_{1})\mu_{1}(z,\mathbf{y}_{2})$$

$$+ \mu_{1}(z,\mathbf{x}_{1})\mu_{1}(z,\mathbf{y}_{1})\tilde{\mu}_{2}(z,\mathbf{x}_{2},\mathbf{y}_{2}) + \mu_{1}(z,\mathbf{x}_{2})\mu_{1}(z,\mathbf{y}_{1})\tilde{\mu}_{2}(z,\mathbf{x}_{1},\mathbf{y}_{2})$$

$$+ \mu_{1}(z,\mathbf{x}_{1})\mu_{1}(z,\mathbf{y}_{2})\tilde{\mu}_{2}(z,\mathbf{x}_{2},\mathbf{y}_{1}) + \mu_{1}(z,\mathbf{x}_{2})\mu_{1}(z,\mathbf{y}_{2})\tilde{\mu}_{2}(z,\mathbf{x}_{1},\mathbf{y}_{1})$$

$$+ \tilde{\mu}_{2}(z,\mathbf{x}_{1},\mathbf{y}_{1})\tilde{\mu}_{2}(z,\mathbf{x}_{2},\mathbf{y}_{2}) + \tilde{\mu}_{2}(z,\mathbf{x}_{1},\mathbf{y}_{2})\tilde{\mu}_{2}(z,\mathbf{x}_{2},\mathbf{y}_{1})$$

# **Quasi-Gaussianity**

$$\begin{split} \mathcal{V}(K,A)_{z} &= K(z)^{2} \phi_{r_{0}}^{\delta}(\xi_{1}) \phi_{r_{0}}^{\delta}(\xi_{2}) \phi_{r_{0}}^{\delta}(\zeta_{1}) \phi_{r_{0}}^{\delta}(\zeta_{2}) \\ &+ \frac{K(z)}{2} \phi_{r_{0}}^{\delta}(\frac{\xi_{1} - \xi_{2}}{\sqrt{2}}) \phi_{r_{0}}^{\delta}(\zeta_{1}) \phi_{r_{0}}^{\delta}(\zeta_{2}) A(z, \frac{\xi_{2} + \xi_{1}}{2}, \frac{\zeta_{2} + \zeta_{1}}{\delta}, 0) \\ &+ \frac{K(z)}{2} \phi_{r_{0}}^{\delta}(\frac{\xi_{1} + \xi_{2}}{\sqrt{2}}) \phi_{r_{0}}^{\delta}(\zeta_{1}) \phi_{r_{0}}^{\delta}(\zeta_{2}) A(z, \frac{\xi_{2} - \xi_{1}}{2}, \frac{\xi_{2} - \zeta_{1}}{\delta}, 0) \\ &+ \frac{K(z)}{2} \phi_{r_{0}}^{\delta}(\frac{\xi_{1} - \zeta_{2}}{\sqrt{2}}) \phi_{r_{0}}^{\delta}(\zeta_{1}) \phi_{r_{0}}^{\delta}(\xi_{2}) A(z, \frac{\xi_{2} - \xi_{1}}{2}, \frac{\xi_{2} - \zeta_{1}}{\delta}, \Omega) \\ &+ \frac{K(z)}{2} \phi_{r_{0}}^{\delta}(\frac{\xi_{1} + \xi_{2}}{\sqrt{2}}) \phi_{r_{0}}^{\delta}(\zeta_{1}) \phi_{r_{0}}^{\delta}(\xi_{2}) A(z, \frac{\xi_{2} - \xi_{1}}{2}, \frac{\xi_{2} - \zeta_{1}}{\delta}, \Omega) \\ &+ \frac{1}{4} \phi_{r_{0}}^{\delta}(\zeta_{1}) \phi_{r_{0}}^{\delta}(\zeta_{2}) A(z, \frac{\xi_{2} + \xi_{1}}{2}, \frac{\xi_{2} + \zeta_{1}}{\delta}, 0) \times A(z, \frac{\xi_{2} - \xi_{1}}{2}, \frac{\xi_{2} - \zeta_{1}}{\delta}, 0) \\ &+ \frac{1}{4} \phi_{r_{0}}^{\delta}(\zeta_{1}) \phi_{r_{0}}^{\delta}(\xi_{2}) A(z, \frac{\xi_{2} + \xi_{1}}{2}, \frac{\xi_{2} + \zeta_{1}}{\delta}, \Omega) \times A(z, \frac{\xi_{2} - \xi_{1}}{2}, \frac{\xi_{2} - \zeta_{1}}{\delta}, -\Omega) \end{split}$$

## On Focussing Classic Time-reversal

Coherence/speckle frequency:

$$\Omega_{\rm c}:=T^{-1}\frac{\ell_{\rm par}}{L},$$

for  $T = L/c_o$  is the travel time over the distance *L* from the source to the TRM for a background wave speed  $c_o$  and  $\ell_{\text{par}}$  is the paraxial distance.

## On Focussing Classic Time-reversal

Coherence/speckle frequency:

$$\Omega_{\rm c}:=T^{-1}\frac{\ell_{\rm par}}{L},$$

for  $T = L/c_o$  is the travel time over the distance *L* from the source to the TRM for a background wave speed  $c_o$  and  $\ell_{par}$  is the paraxial distance.

• In scintillation scaling:

$$\operatorname{SNR} \approx N \max\left\{\frac{B}{\Omega_c}, 1\right\} \text{ for } N := \left(\frac{R_0}{\rho_0}\right)^2,$$

with  $R_0$  being the size of the TRM and  $\rho_0 = O(R_0)$  the size of the elements.

## On Focussing Classic Time-reversal

Coherence/speckle frequency:

$$\Omega_{\rm c}:=T^{-1}\frac{\ell_{\rm par}}{L},$$

for  $T = L/c_o$  is the travel time over the distance *L* from the source to the TRM for a background wave speed  $c_o$  and  $\ell_{par}$  is the paraxial distance.

• In scintillation scaling:

$$\mathrm{SNR} \approx N \max\left\{ rac{B}{\Omega_{\mathrm{c}}}, 1 
ight\} \ \ \mathrm{for} \ \ N := \left( rac{R_0}{
ho_0} 
ight)^2,$$

with  $R_0$  being the size of the TRM and  $\rho_0 = O(R_0)$  the size of the elements.

• Classic result for refocussing resolution ( $\ell_{par} > L$ ):

$$\mathcal{R} \approx \lambda_o \sqrt{\frac{\ell_{\mathrm{par}}}{L}}.$$

Garnier & S Speckle memory effect in frequency domain.. SIAM MMS '23.

## Shower Curtain, Time Reversal and Reciprocity





**Right: Time Reversal** 

Physical intuition: *Medium*  $\sim$  *low pass filter*.

|        | $\sim$ |      | 110 |      |      |
|--------|--------|------|-----|------|------|
| K DUIT | Sal    | na   |     | 121/ |      |
| NIUL   | 001    | i ia | 00  |      | 1116 |
|        |        |      |     |      |      |

- Important parameters: paraxial distance, coherence frequency, scattering mean free path
- Additional effects of medium roughness, partly coherent source
- Application in & active configurations & speckle imaging & virtual aperture configurations